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Abstract: Existing object detectors encounter challenges handling domain shifts between train-

ing and deployment, particularly under poor visibility conditions like fog and night. Cutting-edge

cross-domain object detection methods use teacher-student frameworks and compel teacher and

student models to produce consistent predictions under weak and strong augmentations. In

this paper, we reveal that manually crafted augmentations are insufficient for optimal teach-

ing and present a simple yet effective framework named Adversarial Defense Teacher (ADT),

leveraging adversarial defense to enhance teaching quality. Specifically, we employ adversarial

attacks, encouraging the model to generalize on subtly perturbed inputs that effectively deceive

the model. To address small objects under poor visibility conditions, we propose a Zoom-in

Zoom-out strategy, which zooms-in images for better pseudo-labels and zooms-out images and

pseudo-labels to learn refined features. Our results demonstrate that ADT achieves superior per-

formance, reaching 54.5% mAP on Foggy Cityscapes, surpassing the previous state-of-the-art

by 2.6% mAP.

Keywords: Adversarial Defense, Object Detection, Robustness, Unsupervised Domain Adap-

tation

1 Introduction

A noticeable decline in performance occurs when object detection algorithms are exposed
to poor visibility conditions, e.g., fog, night, etc. [21]. To overcome this performance drop,
supervised methods require extensive annotations, which is expensive and impractical.
Cross-domain Object Detection (CDOD) [22, 6, 4, 16, 2] has thus been proposed to
address this issue, where a pre-trained object detector is adapted from a labeled source
domain to an unlabeled target domain. As a semi-supervised learning scheme, CDOD
eliminates the need for annotating training data in the target domain, making it more
practical for real-world applications.

In recent years, the self-training paradigm [6, 4, 16, 2] has shown promising results
in mitigating domain shift by using teacher-student mutual learning [23]. Specifically,
the entire model consists of two architecturally identical components: a student and
a teacher model. The student model is trained through standard gradient updating,
while the teacher model is updated using the exponential moving average (EMA) of the
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Figure 1: Current self-training methods apply manually crafted augmentations to help
the student model generalize. However, these augmentations offer limited variability and
suffer from overfitting. In contrast, our Adversarial Defense Teacher (ADT) framework
introduces adaptive adversarial augmentations and generates tailored variations that chal-
lenge the network more effectively. Green boxes denote true positives, while yellow boxes
indicate misclassifications. Best viewed in color.

weights from the student model. Additionally, the consistency loss between the pseudo-
labels predicted by the teacher model on weakly augmented data and the predictions of
the student model on strongly augmented data guides the adaptation mutually. Prior
methods [16, 4, 7, 2] suggest employing manually designed augmentations, e.g., Gaussian
blur and grayscaling. One major challenge, however, is the low teaching quality resulting
from the model’s overfitting to manually crafted data augmentations. As shown in Fig. 1,
after training for several epochs, the predictions on blurred data closely resemble those
on the original target data, reducing the effectiveness of teacher-student mutual learning.

To address this issue, we propose a simple yet effective framework called Adversar-
ial Defense Teacher (ADT), which employs adversarial defense to enhance the quality of
teacher-student mutual learning. As gradient-based augmentations, adversarial attacks
are more adaptive than manually crafted augmentation techniques because they are dy-
namically updated to exploit the model’s weaknesses, generating tailored variations that
challenge the network more effectively. Defending against such attacks leads to more ro-
bust training and improved model performance. Moreover, while these adversarial attacks
significantly impact model predictions, they remain imperceptible to humans, ensuring
that the resulting adversarial examples still belong to the same domain.

While adversarial defense significantly mitigates the domain shift, detecting small and
obscure objects remains challenging under adverse visibility conditions. To tackle this
issue, we introduce a Zoom-in Zoom-out strategy. Target images are zoomed in before
feeding into the teacher model so that smaller objects are upscaled and thus more likely
to be included in the pseudo-labels. Subsequently, we perform a zoom-out operation on
both the image and pseudo-labels with the same ratio. The student model is then forced
to detect downscaled objects, ensuring benefits from extracting finer features.



2 Related Works

2.1 Object Detection under Poor Visibility Conditions

Object detection aims at classifying and localizing the objects given in an input image
[19, 24, 8]. A common approach is to first propose regions of interest (ROIs) using region
proposal networks (RPNs) and then refine these candidates in the second stage. In this
work, cross-domain object detection is explored using Faster R-CNN [8] as the baseline
architecture due to its wide range of applications.

Despite the great success, object detection under poor visibility conditions, like fog,
rain and night, has been proven to be vulnerable [21]. Several approaches have been
proposed to address this challenge. In [1], a multimodal sensor information technique is
proposed to improve object detection under adverse weather. In [20, 26, 18], input images
are preprocessed to enhance the visibility conditions, such as removing haze, rain streaks
and raindrops. Despite these advancements, a substantial gap persists in achieving precise
object detection under challenging visibility conditions.

2.2 Cross-Domain Object Detection

Recently, considerable work has employed domain adaptation to achieve better object
detection under challenging visibility conditions. Such cross-domain object detection ap-
proaches can be mainly divided into three categories: feature alignment, domain trans-
lation and self-training. Feature alignment methods [5, 22, 27, 11, 28, 3, 25] conduct
adversarial learning to align the features from both domains with a gradient reverse
layer (GRL). Domain translation methods [15, 12] aim at translating the source data
into target-like styles and thus improve the performance of CDOD. Recently, self-training
methods [6, 4, 16, 2, 7] use weak-strong augmentation and Mean Teacher (MT)[23] for
teacher-student mutual learning and have demonstrated superior advantages in this field.
Adaptive Teacher (AT) [16] additionally applies adversarial learning to bridge the domain
gap. Probabilistic Teacher (PT) [4] and Harmonious Teacher (HT) [7] focus on improv-
ing the quality of pseudo-labels for both classification and regression. Contrastive Mean
Teacher (CMT) [2] leverages contrastive learning to optimize object-level features.

2.3 Adversarial Attack and Adversarial Defense

Different from adversarial learning [16], which focuses on learning domain-invariant fea-
tures, adversarial defense aims to enhance neural networks’ robustness against intentional
yet imperceptible perturbations, i.e., adversarial attacks. Adversarial attacks are broadly
categorized into two types: white-box and black-box attacks. In a white-box attack, the
adversary has complete knowledge of the network under attack, including its architecture,
parameters, and training data. Fast Gradient Sign Method (FGSM) is proposed in [9]
to leverage the gradients of a neural network to design adversarial examples. Building
upon this, Projected Gradient Descent [17] employs multi-step perturbations for a more
powerful attack. In contrast, a black-box attacker only has limited or no knowledge about
the system, making the attack more challenging due to the absence of internal details.



3 Preliminary

CDOD aims at mitigating the impact of domain shift between the source domain Ds =
{Xs, Bs, Cs} and the target domain Dt = {Xt} on object detectors. Source images Xs

are labeled with corresponding bounding box annotations Bs and class labels Cs, while
target imagesXt are not annotated. In the context of poor visibility conditions, the source
domain denotes clear weather in the daytime, while the target domain encompasses various
poor visibility conditions, such as fog and night.

State-of-the-art methods [4, 16, 2, 7] employ the MT framework [23] and weak-strong
augmentation for CDOD. A source model is first pre-trained on labeled source data, serv-
ing as the initial model for two architecturally identical models: the teacher and the
student model. The teacher model generates pseudo-labels with high confidence B′

t and
C ′

t on weakly augmented (e.g., random horizontal flip, etc.) target samples Xw
t , while the

student model is trained on both the labeled source data {Xs, Bs, Cs} and strongly aug-
mented (e.g., Gaussian blur, grayscaling, etc.) target data {Xs

t , B
′
t, C

′
t}. The consistency

loss between the pseudo-labels generated by the teacher model on weakly augmented tar-
get samples Xw

t and the predictions of the student model on strongly augmented target
samples Xs

t improves the generalization capability of the student model through gradient
back-propagation. Concurrently, the teacher model is updated through the EMA of the
weights of the student model as in Eq. 1, performed without any gradient involvement.

θteacher ← βθteacher + (1− β)θstudent (1)

where θteacher and θstudent denote the weights of the teacher and student models respec-
tively.

However, one drawback emerges. The randomly selected strong augmentation may
not guide the student model in the most informative direction, i.e., the direction where
the student model makes the most inconsistent predictions.

4 Adversarial Defense Teacher

In this section, we introduce the proposed Adversarial Defense Teacher (ADT) framework,
which not only addresses the identified issue adaptively by applying adversarial defense
for CDOD (Sec. 4.1) but also incorporates a reasonable inductive bias for poor visibility
conditions (Sec. 4.2).

4.1 Adversarial Defense for CDOD

Given an input image, adversarial attack methods [9, 17] leverage the gradient of the loss
concerning the input to generate a new image that maximizes the loss. This generated
adversarial example can be expressed mathematically as in Eq. 2.

xadv = x+ α · sgn(∇xL(θ, x, y)) (2)

where the parameter α governs the magnitude of the adversarial perturbation, and sgn(·)
refers to the sign function. Furthermore, L(θ, x, y) indicates the loss between the predic-
tion and the ground truth y.
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Figure 2: Overview of the proposed Adversarial Defense Teacher. Our model
includes two branches: 1) supervised branch (blue lines): strongly augmented source
data is fed into the student model. 2) unsupervised branch (orange lines): the teacher
model processes weakly augmented and zoomed-in data to generate pseudo-labels with
high confidence. Adversarial attacks (dashed lines) are conducted on the student model
based on the inconsistency loss Lattack between pseudo-labels and predictions on strongly
augmented and zoomed-out data. The resulting adversarial examples are reintroduced to
the student model. Best viewed in color.

However, ground truth is not available for the unlabeled target data under the setting
of CDOD. To achieve an adaptive data augmentation, we take the pseudo-labels generated
by the teacher model as ground truth and calculate an attack loss Lattack for the student
model. Based on adversarial examples generated to increase Lattack, the student model is
trained to defend itself from such attacks. With each student model being more robust,
the teacher model is expected to benefit as well.

Consistent with common CDODmethods [6, 16], we also employ a confidence threshold
to filter pseudo-labels. The pseudo-labels typically exhibit a higher precision than recall.
This implies that positive objects identified in pseudo-labels are likely correct, yet there
is a notable risk of overlooking a portion of actual positive instances, i.e., false negatives.
Consequently, in the process of conducting adversarial attacks, our objective is to deceive
the model in a way that disrupts its accurate detection of positive objects within pseudo-
labels.

As shown in Fig. 2, we conduct adversarial attacks on the strongly augmented data,
making it more challenging for the model to produce consistent predictions. The overall
loss used for adversarial attacks is defined as:

Lattack = Lrpn
attack(X

s
t , B

′
t, C

′
t) + Lroi

attack(X
s
t , B

′
t, C

′
t) (3)

After applying PGD on the student model using Lattack, adversarial examples are
generated and then fed into the student model again. Due to the adversarial attack,
the student model is deceived effectively to output highly inconsistent predictions as the



pseudo-labels predicted by the teacher model, which in turn enhances the effectiveness of
teacher-student mutual learning.

4.2 Zoom-in Zoom-out Strategy

After conducting adversarial defense, the model is robust enough to correctly detect ob-
jects despite various augmentations or perturbations. However, particularly under chal-
lenging visibility conditions, obscure objects of smaller sizes are still hard to capture. This
challenge arises from the low recall of pseudo-labels, hindering the model’s ability to effec-
tively identify small objects. When encountering obscure objects, humans often exhibit
a natural tendency to zoom in on an image for closer inspection. This zoom-in behavior
facilitates the recognition of obscured details, allowing for improved comprehension of
the object. Remarkably, even after zooming out again, humans can retain the ability to
recognize previously obscure objects. Inspired by this, we propose a Zoom-in Zoom-out
strategy, intending to increase the recall of pseudo-labels predicted by the teacher model
and encourage the student model to extract detailed features.

During the zoom-in phase, the teacher model takes the zoomed-in image as input so
that smaller objects can be better detected, thereby increasing the recall of the generated
pseudo-labels. On the other hand, we zoom out the image and corresponding pseudo-
labels before feeding them into the student model. As all objects are downscaled, the
student model is enforced to extract features from smaller details. To prevent the size
distribution from being disturbed by this strategy, zoomed-out pseudo-labels that are
smaller than a specific threshold are removed.

5 Experiments

5.1 Fog: Cityscapes → Foggy Cityscapes

This experiment evaluates ADT on the commonly used benchmark Cityscapes → Foggy
Cityscapes. Results are shown in Table 5.1. We present the CDOD training and evaluation
results, comparing them with the performance of source (fully supervised on the source
domain) and oracle models (fully supervised on the target domain). We consider both
images with the highest fog severity (”0.02” split) and all images (”All” split) in Foggy
Cityscapes. Similar to many other Mean Teacher-based approaches [16, 2, 7], our method
surpasses the performance of the oracle models on both splits, which are directly trained
on the labeled target domain. This indicates the effectiveness of the teacher-student
mutual learning framework in transferring cross-domain knowledge by leveraging images
from both domains.

Notably, ADT surpasses the previous best performance (from CMT) by 0.8% mAP on
the ”0.02” split and 2.6% mAP on the ”All” split. The relatively larger gain on the ”All”
split underscores ADT’s robustness in learning from a more diverse set of unlabeled data.
This is particularly crucial in real-world applications where acquiring abundant unlabeled
data is feasible, but labeling them is resource-intensive. ADT’s capacity to consistently
improve target-domain performance aligns well with the evolving landscape of growing
unlabeled data, making it well-suited for such real-world scenarios.



Method Reference Split person rider car truck bus train mcycle bicycle mAP

Source - 0.02 25.9 29.4 35.4 6.9 19.8 4.3 16.1 22.7 20.1
Oracle - 0.02 41.9 48.1 64.3 29.1 52.0 38.7 35.7 42.5 44.0

DA-Faster[5] CVPR’18 0.02 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SW[22] CVPR’19 0.02 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
UMT[6] CVPR’21 0.02 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7
PT[4] ICML’22 0.02 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
TDD[10] CVPR’22 0.02 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1
AT†[16] CVPR’22 0.02 45.3 55.7 63.6 36.8 64.9 34.9 42.1 51.3 49.3
CMT[2] CVPR’23 0.02 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3
HT[7] CVPR’23 0.02 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4

ADT Ours 0.02 49.4 57.9 67.6 35.8 55.4 51.9 42.2 48.6 51.1

Source - All 35.1 37.8 51.4 16.6 22.8 12.6 26.4 36.5 29.9
Oracle - All 46.8 51.6 68.7 33.6 56.1 45.7 42.1 48.9 49.2

SW‡[22] CVPR’19 All 34.2 46.3 51.0 28.7 44.9 24.0 33.8 37.1 37.5
PDA[13] WACV’20 All 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9
ICR-CCR[25] CVPR’20 All 32.9 43.8 49.2 27.2 36.4 36.4 30.3 34.6 37.4
PT[4] ICML’22 All 43.2 52.4 63.4 33.4 56.6 37.8 41.3 48.7 47.1
AT[16] CVPR’22 All 45.5 55.1 64.2 35.0 56.3 54.3 38.5 51.9 50.9
CMT[2] CVPR’23 All 47.0 55.7 64.5 39.4 63.2 51.9 40.3 53.1 51.9

ADT Ours All 51.1 58.4 71.3 37.6 63.5 56.5 46.7 51.3 54.5

Table 1: Results of Cityscapes → Foggy Cityscapes.

5.2 Night: BDD100K Daytime → BDD100K Night

In this experiment, we evaluate ADT on the widely used BDD100K benchmark, focusing
on the daytime-to-night domain shift scenario. Results are shown in Table 5.2.

Method Reference
pedes-
trian

rider car truck bus mcycle bicycle
traffic
light

traffic
sign

mAP

Source - 50.0 28.9 66.6 47.8 47.5 32.8 39.5 41.0 56.5 41.1
Oracle - 52.1 35.0 73.6 53.5 54.8 36.0 41.8 52.2 63.3 46.2

DA-Faster †[5] CVPR’18 50.4 30.3 66.3 46.8 48.3 32.6 41.4 41.0 56.2 41.3
UMT [6] CVPR’21 46.5 26.1 46.8 44.0 46.3 28.2 40.2 31.6 52.7 36.2
TDD [10] CVPR’22 43.1 20.7 68.4 33.3 35.6 16.5 25.9 43.1 59.5 34.6
AT [16] CVPR’22 42.3 30.4 60.8 48.9 52.1 34.5 42.7 29.1 43.9 38.5
2PCNet[14] CVPR’23 54.4 30.8 73.1 53.8 55.2 37.5 44.5 49.4 65.2 46.4

ADT Ours 55.2 35.5 73.2 53.3 55.5 40.5 47.3 46.8 67.0 47.5

Table 2: Results of BDD100K daytime → BDD100K night.

5.3 Ablation Studies

We further conduct ablation studies on important components in Table 5.3 and observe
the performance gain from each component. The addition of Adversarial Defense demon-
strates huge performance improvements compared to the Mean Teacher baseline on both



Methods Cityscapes → Foggy Cityscapes BDD100K daytime → BDD100K night

AD ZZ mAP@[.5:.95] mAP@0.5 mAP@0.75 mAP@[.5:.95] mAP@0.5 mAP@0.75

✓ ✓ 29.6 54.5 27.9 23.5 47.5 20.2
✓ 28.3 52.0 26.5 23.2 47.2 19.5

26.4 49.3 24.5 22.7 46.0 19.5

Table 3: Ablation studies. The last row indicates the Mean Teacher baseline. AD
represents Adversarial Defense and ZZ refers to Zoom-in Zoom-out strategy.

fog (2.7% AP) and night (1.2%) adaptation. Meanwhile, the Zoom-in Zoom-out strat-
egy leads to performance improvements of 2.5% in foggy adaptation and 0.3% in night
adaptation. The effectiveness of the Zoom-in Zoom-out strategy is observed to be slightly
diminished in night adaptation due to the distinct domain shifts encountered in foggy
weather and at night. In nighttime conditions, streetlights and vehicle indicators exhibit
visual similarities to traffic lights but on a smaller scale, resulting in less performance
improvement.

6 Conclusions

In this work, we tackle the challenge of Cross-Domain Object Detection under poor visi-
bility conditions and propose a novel framework Adversarial Defense Teacher. We reveal
that manually crafted augmentations only offer limited variations for mutual learning.
The integration of adversarial defense into ADT strategically guides the student model
to update itself in the most informative direction. Additionally, we present a Zoom-in
Zoom-out strategy to address small object detection under adverse visibility conditions.
This strategy involves zooming in on target images for pseudo-label generation by the
teacher model and subsequently zooming out, along with pseudo-labels, for input into
the student model. Our experiments validate the effectiveness of the proposed approach,
particularly in the context of fog and night adaptations.
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