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Abstract: Cameras and LiDAR are among the most commonly used sensors for autonomous

driving applications; often, a combination of both is used. Although both sensors have attracted

considerable interest, camera-based approaches are the most mature, thanks partly to industry

efforts to optimize the underlying processing pipelines. In contrast, LiDAR-based perception

methods still rely on the research community’s efforts to develop and support the processing

libraries that make the methods possible. This imbalance between the perception methods of

the two sensor modalities often results in a high GPU computational load and long inference

times for the processing of LiDAR point clouds, which may be too demanding for the embedded

devices in autonomous vehicles. In this work, we explore point cloud sub-sampling using prior

knowledge to reduce the computational burden of LiDAR processing. In particular, we show

that with perfect prior knowledge, the accuracy of modern 3D object detectors is not affected

even when large portions of point clouds are removed. For practical applications, we instead

use 2D object detections of surrounding cameras to determine relevant regions. In extensive

experiments, we demonstrate that our proposed framework can reduce the computational load

and inference time of 3D object detectors while maintaining high detection performances.

Keywords: Camera-based Prior Knowledge, Efficient Perception, LiDAR 3D Object Detection,

Point Cloud Sub-sampling

1 Introduction

Autonomous vehicles use multiple sensors to perceive the environment reliably. Among
the most common sensor combinations are camera and LiDAR sensors. Camera sensors
provide rich semantic information about the environment, including lane markings and
traffic signs. On the other hand, LiDAR sensors allow for accurate depth measurements
at long ranges independent of the lighting conditions.

In recent years, both sensors have seen a significant improvement in perception meth-
ods, mainly thanks to the development of deep learning approaches. In particular, camera
sensors, a well-established technology, have benefited from the efforts of both the research
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Figure 1: Overview of our proposed framework. Given prior information, we can remove
irrelevant sectors from a LiDAR point cloud, thus decreasing the memory consumption
and inference time.

community and industry to improve the performance and reliability of these methods.
For example, methods such as YOLOv8 [1] allow high object detection performance with
low computational and inference costs. In contrast, LiDAR sensors, which have only
recently become a commonly used sensor, still lag in both computational and speed per-
formance, with methods often requiring large amounts of GPU memory and inference
time to achieve high performance. This imbalance between camera and LiDAR perfor-
mance is mainly because 3D point processing frameworks are still in their infancy and
are primarily community-developed and maintained (e.g., SpConv [2], TorchSparse [3]),
as opposed to being an industry standard (e.g., PyTorch [4], JAX [5]). As autonomous
driving features are introduced into production vehicles, the hardware required to run
such methods is often reduced to embedded devices. Therefore, the high computational
cost that LiDAR sensors can introduce into the processing pipeline may be a deciding
factor in their widespread adoption.

To address the current computation cost of LiDAR sensors, we propose a simple yet
effective framework for reducing the computational load of 3D point clouds by using prior
information about the surrounding environment. Fig. 1 gives an overview of our pro-
posed framework. In particular, given a multi-sensor setup that includes both camera
and LiDAR sensors, we investigate how information extracted from a computationally
efficient source (e.g., 2D bounding boxes extracted from camera images) can be used to
select regions of the 3D point cloud where relevant objects are present. Our extensive
experiments show that the accuracy of popular 3D object detectors is unaffected if the
prior information used is correct, even when large portions of the LiDAR point cloud
are discarded, while drastically reducing both computational load and inference time. In
real applications, where prior information might not be perfect, our experiments on the
popular nuScenes dataset show that using the YOLOv8 object detector in surrounding
cameras can lead to comparable object detection performances while improving compu-
tation times.



In summary, our main contributions are:

• We investigate the use of region dropping in LiDAR point clouds to improve the
computational load and inference time of popular 3D object detectors.

• We explore different region-dropping strategies, including sector-dropping and beam
down-sampling.

• In extensive experiments on the nuScenes dataset, we show that in the ideal case
of perfect prior knowledge, the performance of several 3D object detectors can be
perfectly maintained while reducing inference time up to 40%.

• Additionally, for real-world applications, we show that using fast and efficient 2D
object detectors such as YOLOv8 can lead to comparable performance to using full
point cloud processing while reducing computation load and inference times.

2 Related Work

This section reviews existing work on image-based object detection, LiDAR-based 3D
object detection, and methods that integrate prior knowledge to improve runtime perfor-
mance.

2.1 Image-based Object Detection

Camera-based perception algorithms have seen significant advantages in recent years,
mainly driven by the rapid development of deep learning methods, cheaper computa-
tion hardware, and larger and richer datasets. Among the most popular computer vision
perception tasks is 2D object detection. One of the seminal works in this domain is
R-CNN [6], which introduced the idea of region proposal networks to localize relevant
objects prior to classification. Follow-up works, such as Fast R-CNN [7] and Faster R-
CNN [8], further contribute to the region proposal idea by improving both speed and
accuracy. In contrast, single-stage approaches, such as SSD [9] and YOLO [10], avoid
the expensive region proposal stage, allowing even faster inference times. YOLO has
been adopted by many researchers and seen continual iterations of improvement over the
years, with YOLOv8 [1] being one of the latest incarnations, offering astonishing speed
and performance on several benchmarks. The high speed of modern image-based object
detectors can mainly be addressed to the use of efficient 2D convolutions to extract rele-
vant features. Modern deep learning frameworks, like PyTorch [4], TensorFlow [11], and
JAX [5], all support 2D convolutions, allowing to leverage the ever-increasing hardware
capabilities of GPUs for faster training and inference. In recent years, transformer-based
architectures have also been explored under the family of vision-transformers (ViTs) [12].
Although transformer-based architectures have shown great potential in many different
tasks, their inference performances have only recently reached comparable results with
CNN-based methods.



2.2 LiDAR-based 3D Object Detection

Compared to camera images, which are in a structured format, 3D point clouds are
unstructured and order invariant, making the feature extraction process more complicated.
Early works in 3D object detection tackled this problem by projecting the point cloud in a
structured voxel grid. Detectors, such as VoxelNet [13], leveraged this structure to perform
full 3D convolutions on the point cloud. SECOND [14] builds on the idea of VoxelNet but
uses sparse convolutions to improve training and inference speed significantly. Although
showing good performance, the voxel formulation has the disadvantage that most of the
voxels are empty due to the sparsity of LiDAR point clouds (often reaching 99.99% of
empty voxels [15]). Consequently, most of the computation is wasted on empty voxels.
Other methods of structured projections have been explored in the literature to improve
efficiency. PointPillars [16] projects the point cloud in a pillar grid (a 2D grid with
a single height) and then uses 2D convolutions to extract features. BEVDetNet [17]
uses a bird’s eye view (BEV) projection instead, which, unlike the pillar grids, does not
use height features during processing. On the other hand, range-based methods, such
as [18], project the point cloud into a 2D image using a spherical coordinate system and
then treat it as an image to extract features. Recently, sparse 3D convolutions have
been used for 3D point cloud processing, often resulting in high-performing detectors
such as CenterPoint [19]. Compared to traditional convolutions, sparse operations avoid
computation in empty voxels, drastically reducing computation times. Although libraries
such as SpConv [2] and TorchSparse [3] have allowed for such methods to be developed,
sparse convolutions are still not part of the core industry standard frameworks. Compared
to 2D image-based convolutions, current 3D sparse convolution methods still lag behind
in terms of computational load and inference time.

2.3 3D Object Detection using Prior Knowledge

The usage of prior knowledge to improve the efficiency of 3D object detectors has been
investigated before. Henning et al. [20] propose to reduce the number of processed Li-
DAR point clouds by introducing an event-based frame-dropping based on 2D object
detections. While this approach can save computations, the performance decreases with
an increased number of dropped frames. In contrast, our method can save computations
while maintaining detection performance. Frustum-based LiDAR processing introduced
by Qi et al. [21] adds camera information to the LiDAR processing pipeline. By projecting
a 3D frustum of each camera detection into the point cloud, they can select areas, which
are then processed by a PointNet [22]. Frustum ConvNet [23] extends the frustum-based
approach by using convolutional neural networks (CNNs) to capture local spatial features
better. Paigwar et al. [24] propose Frustum-PointPillars, which combines the benefits of
both [21, 23] by using pillars [16], which further improves the performance. Our method
is most similar to frustum-based approaches. However, instead of using a single camera
view to generate frustums based on each camera detection, our method uses multi-view
surround cameras and uses the 2D detections as priors to drop whole sectors of the LiDAR
point cloud.
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Figure 2: Overview of our method. We assume a surround-view camera setup combined
with a 360◦ LiDAR sensor. Then, we split the point cloud p into NS sectors, where each
sector corresponds to the field of view of a camera. Now, object detection is performed
for each camera and each point cloud sector, where the corresponding camera did not
detect any object is dropped. Finally, using the prior-knowledge α extracted from the 2D
object detection, the subsampled point cloud p′ is derived using the RoI-select function
f(p, α) used as input to a 3D object detector, leading to improved inference times and
less memory consumption.

3 Method

This section presents the proposed framework, outlining both reprocessing with ground
truth prior knowledge and the adaptation to real-world applications using surrounding
multi-camera images. An overview of our proposed method is given in Fig. 2.

3.1 Problem Setting

We assume that an autonomous vehicle is equipped with a 360◦ LiDAR sensor and sur-
rounding view multi-camera setup. Assuming both sensors are synchronized and well-
calibrated, at time step t, the LiDAR sensor delivers a point cloud p ∈ RN×C , with N
total points, each defined by C features, i.e., x, y, z, intensity. Furthermore, the camera
sensors deliver a set of images I = {i1, . . . , iℓ}, where ℓ is the total number of cameras and
i ∈ RH×W×D is a single image with sizes H, W and D. Assuming that the LiDAR sensor
and the camera images have an overlapping field of view, our method aims to identify
which regions of the LiDAR point cloud p contain relevant objects. In particular, we aim
to define the region-of-interest selection function (RoI-select) f(p, α) : RN×C → RN ′×C ,
which takes as input the point cloud p and a set of prior-knowledge information α and
returns a point cloud p′ which has N ′ points, with N ′ ≤ N .

The prior information α can be derived from multiple sources, e.g., ground truth infor-
mation, offline maps, real-time traffic information, or other sensors. In our approach, we
rely on two source types: ground truth 3D object detections derived from an oracle source
(e.g., label information) and 2D bounding box objects extracted from the camera images.
We use the first source (ground-truth information) as a proof of concept to determine the



upper-bounds performances of our approach and the second source (2D bounding boxes
from camera images) as a real-world application of our proposed framework.

3.2 Region of Interest Selection via Ground Truth Priors

As input, it is assumed that the LiDAR point cloud p and the prior knowledge α com-
posed of the set of 3D bounding boxes B are present. Here, the set B represents the
relevant objects in the scene, with B = {b1, . . . ,bM}, b = [x, y, z, w, l, h, θ] expressing
the position, size, and orientation of the object and M the total number of boxes. We
divide p into NS polar sectors S = {s1, . . . , sNS

} to select the relevant regions in the point
cloud. To do this, we first project the (x, y, z) Cartesian coordinates of each point in p
in spherical coordinates (r, ϕ, σ), where r =

√
x2 + y2 + z2, σ = atan2(

√
x2 + y2, z) and

ϕ = atan2(y, x). Then, we divide the point cloud into NS equally spaced sectors S, each
containing a subset of points of p. The RoI-select function, which in this case takes as
input f(p, B), selects a sector s ∈ S if it includes points that are part of one of the objects
determined by B. Sectors that do not contain any relevant objects are discarded. The
final point cloud p′ is then composed by concatenating all valid sectors s.

3.3 Region of Interest Selection via 2D Image Detection

In real-world applications, ground truth prior information like the ones described in the
previous section is often unavailable. Therefore, other sources of prior knowledge need
to be derived. As mentioned, we rely on 2D object detections from surrounding camera
images to extract such information. In particular, given a set of images I, we perform
object detection in each image i ∈ I using the fast and computationally efficient YOLOv8
architecture. This operation results in a set of 2D detection boxes D for each camera
image, which can be used to define the RoI-select function f(p, D). As we assume to
have a surrounding camera system with a full 360◦ field of view, each camera can be
associated with a specific section of the LiDAR point cloud. Therefore, as in the previous
section, we divide p into NS different sectors S, where NS is the total number of cameras
ℓ. Unlike before, where a sector was discarded if it did not contain points belonging to a
relevant object, here, a sector is kept if there are 2D object detections of relevant classes
in the camera image. Afterward, the output point cloud p′ is the concatenation of all the
points belonging to the kept sectors. A visual example of the sector selection process is
shown in Fig. 2.

3.4 Additional Methods for Region Selection

Thus far, sector dropping has been assumed to reduce the total number of input points.
However, the proposed framework allows for different point selection approaches. For
example, beam sector down-sampling can be used to reduce the number of points in the
vertical field of view of the LiDAR sensor. Given a down-sampling factor d ∈ N, the
number of points can be reduced by simply choosing every d increment of azimuth angle
ϕ. More advanced methods can also be used if different prior knowledge is available. For
example, if semantic segmentation is performed on the camera images instead of object
detection, only masks containing relevant object points could be selected, further reducing
the number of input points.



4 Experimental Results

This section extensively evaluates our proposed approach on multiple standard LiDAR
object detectors. In addition, we also demonstrate the effect of perfect prior information
on inference time and accuracy.

4.1 Dataset

We conduct experiments on the multi-modal automated driving dataset nuScenes [25].
The nuScenes dataset consists of 1000 driving scenes recorded in Boston and Singapore.
Each scene is captured using six cameras, a 32-beam LiDAR, and five radar sensors.
The LiDAR sensor can return up to 1.4M points per second [25]. This work only uses
the provided 360◦ camera data and the LiDAR point clouds. To evaluate the object
detection performance, we report the standard nuScenes metrics, i.e., the mean average
precision (mAP) and the nuScenes detection score (NDS).

4.2 Implementation Details

We implement our method in PyTorch [4] using the OpenPCDet [26] framework. All
experiments were performed on an NVIDIA GeForce RTX 3090. Our method is detector-
agnostic and is applied only during inference. To validate the effectiveness of our ap-
proach, we test our method on the following LiDAR object detectors: PointPillars [16],
SECOND [14], and CenterPoint [19]. All detectors were trained using the default settings
used by OpenPCDet. Note that the point cloud range is different for different detectors,
resulting in a different amount of input points. For the camera object detector, we use
the YOLOv8 [1, 27] detector trained on the BDD100K [28] dataset. The YOLOv8 archi-
tecture is chosen due to its fast inference time and ability to generalize to other datasets,
such as nuScenes.

4.3 Results

We evaluate our method on the nuScenes validation set. Since the nuScenes dataset also
provides sweeps of intermediate timesteps, we also report the results of using multiple
sweeps as input, leading to an even higher amount of points.

Region of Interest Selection via Ground Truth Priors. In Tables 1 and 2, the
results using the ground-truth priors in the RoI-select function are reported. The mean
and standard deviation of the inference time were measured over the entire nuScenes
validation set. In the case of single sweep input processing, we can see that compared
with the entire point cloud input, all three detectors achieve similar mAP and NDS
scores. In the case of PointPillars, we see a slight reduction in performance (−1.48mAP,
−0.99NDS) when using NS = 50, which highlights that, although not fundamental, the
surrounding context, which might be dropped from the region selection, can help improve
object detection performances. Conversely, we see that in the case of CenterPoint, sector
dropping helps improve detection performances by small margins. For example, in the
case of NS = 10, the performance improves by +0.54mAP and +0.27NDS. This effect
can be mainly explained by reducing false positive detections, avoided by not processing



Table 1: Evaluation results of the proposed method using ground truth prior knowledge
(Section 3.2). The experiments are conducted in the nuScenes validation set using a single
sweep input for the object detectors. In the table, the performance for the full input
processing as well as different values of the sector dropping parameter NS are reported.
The detection metrics mAP and NDS are in percentage.

Detector Sectors mAP ↑ NDS ↑ Inference
Time (ms)

Num
Points

Num Pred
Boxes

CenterPoint

full 49.34 49.79 49.70 ± 2.02 34288 151

6 49.71 49.97 46.88 ± 1.44 27770 139
10 49.88 50.06 46.40 ± 1.55 25025 134
20 49.84 50.02 45.94 ± 1.63 21322 127
30 49.76 50.00 45.65 ± 1.64 19234 122
40 49.64 49.94 45.40 ± 1.72 17888 120
50 49.49 49.84 45.48 ± 1.58 16894 118

PointPillars

full 40.95 43.79 27.00 ± 1.38 34195 49

6 40.89 43.72 25.47 ± 1.34 27688 48
10 40.84 43.65 25.21 ± 1.34 24949 47
20 40.40 43.34 25.13 ± 1.37 21257 47
30 39.96 43.09 25.17 ± 1.34 19176 46
40 39.69 42.90 25.15 ± 1.33 17834 45
50 39.47 42.80 25.14 ± 1.34 16843 45

SECOND

full 47.38 48.29 36.88 ± 1.64 34195 52

6 47.42 48.26 34.66 ± 1.82 27688 51
10 47.55 48.37 34.37 ± 1.92 24949 50
20 47.41 48.20 33.85 ± 1.98 21257 50
30 47.21 47.98 33.64 ± 2.12 19176 49
40 47.24 47.96 33.33 ± 1.94 17834 49
50 47.07 47.86 33.33 ± 2.10 16843 48

nonrelevant point cloud regions. This is also reflected in the average number of predicted
boxes for the whole point cloud (151 boxes) and the reduced input (134 boxes).

When observing the number of input points, we see that a considerable reduction is
possible. For example, in the case of CenterPoint and NS = 50, a reduction of 17394
points can be achieved, which is approximately 50% fewer points. In the case of multi-
sweep inputs, which generally lead to a more significant number of input points, a similar
trend can be observed in both performance and the number of input points. As the total
number of points is usually directly connected to the number of voxels or pillars that a
3D object backbone processes, the observed reduction dramatically reduces the detector’s
computational burden. This is particularly true for sparse convolution backbones like
the one used by SECOND or CenterPoint, where convolutions are performed only on
non-empty voxels. Therefore, by appropriately removing regions of space where relevant
objects are not present, the computation load of an object detector can be reduced without
any architectural changes.



Table 2: Evaluation results of the proposed method using ground truth prior knowledge
(Section 3.2). The experiments are conducted in the nuScenes validation set using a multi
sweep input (10 sweeps) for the object detectors. In the table, the performance for the
full input processing as well as different values of the sector dropping parameter NS are
reported. The detection metrics mAP and NDS are in percentage.

Detector Sectors mAP ↑ NDS ↑ Inference
Time (ms)

Num
Points

Num Pred
Boxes

CenterPoint

full 59.21 66.47 74.61 ± 14.75 256866 132

6 59.59 66.65 54.13 ± 2.91 200731 123
10 59.76 66.73 53.24 ± 2.88 179235 119
20 59.89 66.76 52.51 ± 2.87 152642 113
30 59.98 66.72 51.96 ± 2.73 137878 109
40 60.17 66.81 51.64 ± 2.71 129086 107
50 59.97 66.76 51.19 ± 2.72 122856 106

PointPillars

full 44.70 58.29 48.86 ± 14.65 255936 93

6 44.87 58.42 29.79 ± 1.14 199902 87
10 44.92 58.37 29.59 ± 1.14 178467 83
20 44.86 58.29 29.43 ± 1.24 151980 79
30 44.88 58.27 29.33 ± 1.23 137284 77
40 44.92 58.26 29.31 ± 1.27 128530 75
50 44.79 58.21 29.18 ± 1.28 122335 74

SECOND

full 50.65 62.39 58.50 ± 14.06 255936 74

6 51.48 62.85 40.82 ± 2.12 199902 72
10 51.78 63.00 40.33 ± 2.22 178467 70
20 52.04 63.15 39.80 ± 2.29 151980 68
30 52.27 63.24 39.35 ± 2.37 137284 66
40 52.48 63.33 39.12 ± 2.32 128530 65
50 52.45 63.33 38.94 ± 2.39 122335 64

In Tables 1 and 2, we also report the inference times measured on the validation set.
Although the absolute numbers heavily depend on the GPU hardware used for inference,
the relative improvement shows that a substantial reduction in inference time can be
achieved. This is especially true for the multi-sweep input, which, as mentioned before,
leads to a much higher number of input points. For example, in the case of PointPillars
with NS = 50, the inference time is reduced with respect to the total input processing by
19.68ms approximately which corresponds to roughly 40% faster inference time. A similar
trend is also observed for CenterPoint (31% faster inference) and SECOND (33% faster
inference time). For the single sweep inputs, there is also an improvement in inference
time, albeit to a lesser extent.

Region of Interest Selection via 2D Image Detection. In Table 3, we report the
results using prior information from the 2D detections from the six surrounding cameras.
Similar to the ground truth prior knowledge usage described above, it can be seen that
a reduction in the total amount of input points and inference time can be achieved. For



Table 3: Evaluation results of the proposed method using prior knowledge derived from
computing 2D detections in the surrounding camera images (Section 3.3). The experi-
ments are conducted on the nuScenes validation set using both single sweep and multi
sweep (10 sweeps) inputs for the object detectors. The detection metrics mAP and NDS
are in percentage.

Multi
Sweep

Detector
RoI

Select
mAP NDS

Inference
Time (ms)

Num
Points

Num
Pred Boxes

✓

CenterPoint
✗ 59.21 66.47 74.61 ± 14.75 256866 132
✓ 57.42 65.42 54.28 ± 2.93 211924 125

PointPillars
✗ 44.70 58.29 48.86 ± 14.65 255936 93
✓ 43.06 57.35 29.44 ± 1.21 211070 88

SECOND
✗ 50.65 62.39 58.50 ± 14.06 255936 74
✓ 49.60 61.84 40.73 ± 2.18 211070 72

✗

CenterPoint
✗ 49.34 49.79 49.70 ± 2.02 34288 151
✓ 47.91 48.96 47.27 ± 1.30 28988 142

PointPillars
✗ 40.95 43.79 27.00 ± 1.38 34195 49
✓ 39.62 43.02 25.01 ± 1.31 28903 48

SECOND
✗ 47.38 48.29 36.88 ± 1.64 34195 52
✓ 46.08 47.59 34.73 ± 1.72 28903 50

example, in the case of PointPillars with multi-sweep input, the total number of points
is reduced by more than 44 k points, which results in an approximately 39% faster in-
ference time. Such results are achieved while only sacrificing 1.64 mAP and 0.94 NDS
percentage points. Similar results can be seen for SECOND and CenterPoint. In con-
trast to the ground truth prior knowledge experiments, using 2D object detections from
the surrounding cameras is applicable in real-world applications. Although performing
inference on multiple cameras adds to the overall computational time of the system, in
multi-sensor setups like those found in autonomous driving vehicles, such detections need
to be computed in any case and, therefore, do not add additional inference time overhead.
Additionally, sector dropping does not require complex operations and can be efficiently
computed with minimal overhead while significantly reducing the input load and inference
time.

Input Reduction via Beam Sector Downsampling. In Table 4, we report the
results using beam sector down-sampling instead of sector removal. The results show a
similar reduction in inference time compared to the entire sector. However, both mAP and
NDS yield slightly lower results. This phenomenon can be linked to possible false positive
detection caused by the down-sampling artifacts. Although the down-sampling strategy
is less effective than the entire sector dropping, for more advanced LiDAR sensors with
more vertical layers, this could be beneficial to reduce the input load while still allowing
for possible detections of objects that the 2D object detector has missed.



Table 4: Evaluation results of the proposed method using ground truth prior knowledge
(Section 3.2) and beam sector down-sampling (Section 3.4) described by the parameter d.
All experiments are reported using NS = 6 and CenterPoint as detector. The detection
metrics mAP and NDS are in percentage.

Multi
Sweep

d mAP NDS
Inference
Time (ms)

Num
Points

Num
Pred Boxes

✓

2 59.40 66.56 54.34 + 2.69 203566 131
4 59.36 66.55 54.40 + 2.77 202117 131
8 59.34 66.54 53.99 + 2.89 201340 131
16 59.39 66.56 54.16 + 2.99 200947 129

✗

2 49.36 49.80 47.64 + 0.91 30165 153
4 49.35 49.79 47.38 + 1.01 28922 150
8 49.39 49.82 47.19 + 1.12 28306 147
16 49.56 49.90 47.01 + 1.29 27959 144

5 Discussion

The proposed framework shows that the simple strategy of selecting point cloud regions
where relevant objects are present can be highly effective in reducing the number of
input points to be processed and the inference time. However, in cases where perfect
ground truth prior knowledge is not available (i.e., in most real-world applications), some
additional uncertainty is inevitably introduced into the perception pipeline. Although
modern object detectors such as YOLOv8 achieve high performance in most situations,
the failure to detect relevant objects could lead to an overall degradation of the perception
pipeline. Therefore, the benefits of the proposed method need to be carefully weighed
against the possible risks it can introduce when applying it in real-world applications.
Nevertheless, if reliable object detection can be ensured, e.g., by the camera sensors, our
framework offers the possibility to significantly reduce the computation time for LiDAR
object detection with even slightly improved performance compared to the full point cloud
processing with the same detectors.

6 Conclusion

In this work, we presented region dropping in LiDAR point clouds to improve the inference
time of current LiDAR 3D object detectors. We exploit the fact that current autonomous
vehicles are equipped with multiple sensors, such as cameras. By leveraging the 2D detec-
tions of the YOLOv8 object detector on camera images, we can find the relevant sectors
in the point cloud while removing those without objects of interest. As a result, we can
drastically lower the number of points that the LiDAR object detector needs to process.
We evaluate our method on the large-scale nuScenes dataset. Our method is agnostic of
the underlying object detector, and we evaluate it on popular LiDAR object detectors,
such as PointPillars, SECOND, and CenterPoint. The results show that using the prior
information obtained from the camera detections allows for a decrease in the required
inference time while maintaining similar object detection performance. To showcase the



upper bound of performance gain, we simulate the benefit of perfect detections by us-
ing the ground-truth boxes for sector dropping. We hope that our research inspires new
research in performance optimization in LiDAR processing, making the use of LiDAR
sensors in autonomous driving more accessible.
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