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Abstract:

Safety is the most critical aspect to address for the real-world deployment of robotic plat-
forms, such as autonomous driving systems. While learning-based approaches like reinforcement
learning have gained popularity for managing real-world complexity, they often lack transparency
and safety awareness. In this paper, we aim to advance the development of safety-aware Al
agents by presenting a framework for estimating collision probability distributions, which can
be integrated into the decision-making process of reinforcement learning agents. To this end, we
provide a thorough definition and motivation for incorporating safety awareness, highlighting its
importance for reliable and interpretable decision-making. Finally, we demonstrate how these
collision probabilities can be effectively integrated into decision-making by incorporating them
into a value function, enabling safety-aware reinforcement learning.

Keywords: collision avoidance, reinforcement learning, safety awareness, temporal difference
learning

1 Introduction

In safety-critical systems, interpretability is essential [1], which is why interest in explain-
able Al (XAI) has significantly grown in recent years [2]. Efforts to enhance decision
transparency have been made across various robotic domains [3], driven in part by con-
cerns over the lack of trust in deep learning-driven approaches [4], particularly in au-
tonomous driving [5, 6]. A very promising approach for machine learning based decision
making is reinforcement learning (RL), due to its recent successes in many areas |7, §].
Even though safety is typically incorporated by assigning negative rewards for collisions
[9] or proximity to other objects [10, 11], explicit risk assessment is absent. The overall
quality measure for a state is represented as a single value from the value function, which
is primarily used during training and has no direct effect during deployment. Whereas
some approaches exist that try to include risk assessment by extending the framework
with other tools, such as prediction modules [10], there is still no holistic approach for
safety-aware RL.

To address this issue, we propose modifying the value function in reinforcement learn-
ing to reveal situational risk via collision probability distribution estimation [12], which
can be interpreted as a part of the value function decomposition [13]. The total value
can then be used for decision-making through standard RL approaches [14]. This pro-
vides two key benefits: (1) the collision probability distribution serves as a transparent,
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Figure 1: An overview of collision probability distribution estimation as described in [12].
Given a scenario where a feature vector is extracted (which could also be a raw camera
image), a neural network predicts cumulative collision probability values over a specified
time horizon (in this case, 5 seconds), with equidistant time intervals between all predicted
probabilities (in this case, 1 second). The learning procedure utilizes a bootstrapping
mechanism, meaning that collision probability values for shorter time horizons can learn
from those for longer time horizons.

interpretable metric during both training and deployment, and (2) the learned collision
probabilities can offer valuable feedback to the agent. An overview of our collision prob-
ability distribution estimation is given in Fig. 1.

Our approach does not guarantee safety as formal methods do [15, 16], instead it em-
braces the fact, that collisions can always occur in reality due to uncertainty arising from
model errors or perception limitations. We argue that this approach offers several ad-
vantages, including more efficient training, as risk estimates can be leveraged for scenario
generation and safety comparisons between different approaches.

Building on our work in [12], we frame our approach in the context of safety awareness,
shift from policy evaluation to policy improvement, and demonstrate its applicability to
long-term (5-second) predictions. These predictions can aid reinforcement learning algo-
rithms in high-level decisions, such as merging into adjacent lanes. While we present the
overall framework, our primary focus remains on policy evaluation—specifically, estimat-
ing collision probability distributions.

In the following section, we introduce the concept of safety awareness and its relevance
to our approach. Sec. 3 provides an overview of related work on collision probability
estimation. In Sec. 4, we present the collision probability distribution estimation frame-
work, initially focusing on policy evaluation and later extending it to policy improvement.
Sec. 5 presents an evaluation of the policy evaluation in an autonomous driving simulator
(CARLA Simulator [17]). In Sec. 6, we provide a brief discussion of our findings and
outline future research directions. Finally, we conclude the paper in Sec. 7.

2 Safety Awareness in Decision-Making

Safety itself can be viewed from multiple perspectives, including mechanical limitations,
environmental constraints, or the probability of collisions. In this work, we focus specifi-



cally on collisions, as they represent a crucial and directly measurable aspect of safety in
autonomous systems.

2.1 What is safety awareness?

Safety awareness refers to an agent’s ability to assess risks based on its own
behavior and understanding of its environment. Inspired by the general concept
of awareness—defined as ”knowledge that something exists, or understanding of a sit-
uation or subject at the present time based on information or experience” (Cambridge
Dictionary)—safety awareness encompasses an agent’s ability to recognize and interpret
potential risks based on its interactions/experiences with the world. Unlike predefined or
externally imposed safety metrics, safety awareness emerges as a result of an agent’s be-
havior within a given environment, making risk not an independent variable but a direct
consequence of the agent’s decisions and actions. Many existing approaches define risk or
safety independently of the agent’s behavior; however, this neglects the fundamental fact
that risk is inherently behavior-dependent.

We distinguish between implicit and explicit safety awareness. Explicit safety
awareness refers to methods where the risk assessment is explicitly represented and
communicated, allowing external observers or other components of the system to inter-
pret the agent’s safety evaluation. In contrast, implicit safety awareness occurs when
the agent internally accounts for safety in its decision-making process without explicitly
exposing a risk measure. Vanilla reinforcement learning strategies typically exhibit im-
plicit safety awareness, as the value function is a composition of many different reward
signals, such as safety, energy efficiency, and performance.

Interpretability is an essential aspect of safety awareness, as it enables transparent
risk assessment and facilitates meaningful comparisons across different policies, states or
actions. Traditional reinforcement learning approaches often lack interpretability because
value functions aggregate multiple reward signals, making it difficult to isolate safety-
related information. Additionally, the use of a discount factor introduces temporal scaling
effects, further obscuring the direct assessment of risk.

In contrast to formal safety guarantee methods, which aim to ensure absolute safety
through strict constraints and verification techniques, safety awareness focuses on
estimating and assessing risk rather than eliminating it. This distinction makes
safety awareness particularly relevant for model-free approaches, where no structured
abstraction of the environment exists, rendering traditional formal methods inapplicable.
Instead of relying on strict verification for absolute safety guarantees, safety-aware agents
estimate and assess risk, allowing them to adapt to uncertain environments.

The necessity of safety awareness arises fundamentally from uncertainty.
In dynamic and unpredictable environments, agents must continuously evaluate potential
hazards rather than rely on static safety assurances. Safety awareness is not merely
about ensuring safety but about developing a deeper understanding of the conditions
that influence it. Importantly, this perspective acknowledges that absolute safety may
not always be achievable but can still be meaningfully assessed and managed.

2.2 Collision Probability Distribution in the Context of Safety
Awareness

In this paper we propose a collision probability distribution estimation based on temporal
differences which is briefly explained in Sec. 4.1 and evaluated in Sec. 5, as part of the



decision-making process of an RL agent, which is explained in Sec. 4.2. Our approach
provides explicit, interpretable safety awareness and in the following we want to account
for its beneficial properties:

e Interpretability
The estimation of collision probability differs significantly from the traditional value
function approach used in reinforcement learning (RL). Unlike the value function
(see Sec. 2.1), which requires a discount factor, the estimated collision probability
offers interpretability.

e Comparability
One of the challenges of using the value function is its sensitivity to different dis-
count factors, reward structures, and parameter settings. This sensitivity makes it
difficult to compare results across varying reward configurations. In contrast, ex-
plicitly estimating collision probabilities provides a more consistent framework for
evaluating safety. It enables a quantitative comparison between different policies
with respect to the overall performance, but also for specific scenes/states.

e Temporal Information
The proposed approach enables the estimation of time windows in which collisions
are likely to occur. This temporal information can be utilized to communicate
imminent risks to external systems or passengers, allowing for proactive warnings
and timely intervention.

e Targeted Training and Scenario Generation

Transparency in safety evaluation facilitates the identification of hazardous sce-
narios, which can then be used to refine training and improve agent performance.
Scenarios are classified as dangerous for two primary reasons: (1) the agent’s subop-
timal actions increase the likelihood of a collision, or (2) the scenario inherently leads
to a higher risk of collision despite optimal agent behavior. By recognizing these
distinctions, targeted scenarios can be generated to address specific weaknesses in
the agent’s decision-making process, ultimately enhancing its robustness in critical
situations.

e Isolated Safety Evaluation
A limitation of the value function in traditional RL frameworks is the aggregation
of values across multiple criteria, which precludes an isolated assessment of safety.
By focusing explicitly on collision probabilities, the proposed method enables a de-
coupled evaluation of safety-related aspects. This isolation enhances interpretability
and provides more actionable insights into the agent’s performance in safety-critical
contexts.

e Avoiding Redundancy
Many RL approaches incorporate risk assessment through additional methods, such
as state prediction neural networks [10]. However, our approach eliminates the need
for such auxiliary models by directly estimating collision probabilities within the
decision-making process.



3 Related Work

Many widely recognized approaches in autonomous driving do not explicitly incorporate
collision probabilities. Notable examples include the rule-based Responsibility-Sensitive
Safety (RSS) framework by MobileEye [18] and the Safety Force Field (SFF) by Nvidia
[19]. These methods rely on predefined behavioral assumptions about other traffic par-
ticipants and object dynamics. While they have been successfully applied and remain
subjects of ongoing research, they inherently overlook critical aspects such as the ag-
gressiveness of individual drivers or regional variations in driving behavior. Essentially,
these approaches operate under the assumption that as long as predefined safety rules are
followed, the probability of collision remains zero or negligible.

In contrast, some approaches explicitly compute collision probabilities. For instance,
[16] employs a Monte Carlo (MC) method to estimate a single collision probability involv-
ing both static and dynamic objects, which is then used to determine appropriate speed
limits. Similarly, [15] uses a more sophisticated analytic approach, leveraging stochastic
reachable sets to compute collision probabilities.

The concept of collision probability distributions (CPDs) is not novel and has been
explored within classical methodologies. In [20], Monte Carlo simulations are applied to
a Gaussian distribution of trajectories for both the ego vehicle and surrounding traffic
participants, allowing the computation of a time-dependent CPD. A more efficient al-
ternative is presented in [21], where dynamic objects are approximated using octagonal
bounding regions, leading to an analytical solution with improved computational perfor-
mance. These methods perform CPD estimation entirely online, whereas our approach
leverages deep learning. In our framework, CPDs are learned during training, and only
inference is performed online, enabling real-time application with pre-trained experience.

Unlike classical methods, machine learning-based approaches are not necessarily con-
strained by the same simplifying assumptions. For instance, [22] proposes a deep pre-
dictive model that estimates both the mean and variance of collision probability using
variational inference [23]. Other approaches rely on scene graphs to model interactions.
In [5], a scene graph captures the topological relationships between vehicles, while [24]
extends this concept to pedestrian interactions to estimate collision probabilities.

Despite these advancements, none of the aforementioned approaches compute a full
CPD within a learning-based framework, nor do they integrate CPDs into reinforcement
learning framework. Our method addresses this gap by providing a deep-learning-based
CPD estimation technique that can be seamlessly incorporated into reinforcement learning
agents. Tab. 1 summarizes the key differences between our approach and prior work.

Table 1: Classification of collision probability approaches

Single probability value Probability distribution
Classical [15, 16] 20, 21]
Learning-based [5, 6, 22] Ours

4 Methods

4.1 Collision Probability Distribution Estimation

The main idea of our approach is to use a fixed, finite horizon (Ty = At - Ny ), where
At represents the time discretization step, and to assume no discount factor (v = 1). This



formulation can be derived similarly to the Bellman equation:

‘/t%t+NH(S) = E[RtJrl + Riyo+ ...+ Rt+NH ’ So = 5]
= E[Ri41 + Ger1seeny | So = 8] (1)
=E[Rit1 + Vistang—1(5e41) | So = 9]

Here, V;_,;14(s) is the finite-horizon value function for state s with a horizon of At -, and
Giik—tyr 1s the return from time ¢ + k£ to t + . It becomes clear that the bootstrapping
mechanism works by using value functions with progressively smaller horizons. This
requires a distribution of value functions, but simultanecously provides richer outputs
by incorporating temporal information. By introducing multiple value functions:

Visi, for i=1,... Ny (2)

we can apply temporal difference learning, which can be further extended to TD()) [12,
14], providing a powerful tool for value function learning.

Next, we assign a reward of —1 for collisions and 0 otherwise, leading to the following
relationship:

pcollision,taﬂri(s) = _‘/t%pri(s) (3)

where Deoiision t—t+i(s) is the collision probability within the time interval [t,¢ + ¢]. This
arises from the fact that the probability of an event occurring within a given time horizon
is the number of times the event occurs from a given state divided by the total number
of times that state is visited, which directly corresponds to the definition in Eq. (1). For
more details on the framework, we refer the reader to [12].

4.2 Safety Awareness

In the previous section, we formulated a method to calculate the collision probability
distribution for a finite horizon. This distribution can be represented as a vector of
values:

V = [‘/;t—nt—i—l Vgﬁ—)t-ﬂ V;f—>t+NH}T (4)

However, in RL, a scalar is typically used to assess the value of a state. Therefore, we
need an aggregation function to derive a single value from Eq. (4):

‘/collision = faggregate(v): A\ S RNH — ‘/collision S R (5)

An overview of this approach is given in Fig. 2. The aggregation function could be
a simple min-operator, meaning that only the collision probability for the entire time
horizon is considered, while the distribution itself is ignored. Note that the min-operator
must be considered because of the relationship given in Eq. (3). However, we argue that
a more sophisticated function that takes the entire distribution into account may be more
beneficial. Potential collision events further in the future could provide valuable time for
additional actions, such as warning the vehicle occupants or mitigating the severity of the
collision. This idea is illustrated in Fig. 3.

Once the collision probability distribution has been aggregated, as specified in Eq. (5),
we can use the value function decomposition approach to obtain a single value function
[13].
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Figure 2: A proposal to integrate the collision probability distribution estimation into the
value function.
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Figure 3: Both subfigures display collision probability distributions. While the overall
collision probability for the entire horizon (Ny = 5) is the same (p;—¢1n,, = 0.5) in both
cases, the left subfigure indicates that the collision event is most likely to occur 3 steps
later. This delay is more advantageous, as it allows time for additional actions, such as
switching strategies (e.g., safe braking) or issuing alerts.

5 Evaluation

Our evaluation focuses on the prediction capabilities of the collision probability distribu-
tion estimation, using a long-term horizon of 5 seconds with a time step of 0.1 seconds.
We used the CARLA Simulator [17] by spawning a fleet of 30 vehicles and pedestri-
ans, all autonomously controlled by the Traffic Manager. The ego vehicle also operated
autonomously, following a simple lane-keeping strategy.

The evaluation was conducted over 2000 episodes, each with a maximum length of 3000
steps, during which 744 episodes ended in a collision. The value function approximator
was a deep neural network with a CNN backbone, which received stacked semantic bird’s-
eye views as input [25]. Further details on the architecture are available in [12].

In Fig. 4, the collision probability distributions over the final 5 seconds before a col-
lision are visualized. The results demonstrate that our framework effectively learns col-
lision probabilities, with predictions becoming increasingly confident as the ego vehicle
approaches the collision, as indicated by the steadily rising probability values. How-
ever, some collision characteristics in the figure suggest that certain events were detected
relatively late, likely due to a limited feature space lacking sufficient evidence or an insuf-
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Figure 4: Collision characteristics in the testing environment within the CARLA Simula-
tor. The visualization illustrates the evolution of collision probabilities over time, leading
up to a collision event at ¢ = 5.0 seconds. The top left subfigure depicts the mean colli-
sion probability over 50 collision events, while the remaining subfigures present individual
examples.

ficient training dataset. Nonetheless, the mean collision characteristics shown in the top
left subfigure of Fig. 4 reflect a robust risk assessment.

To the best of our knowledge, this is the first work to introduce a generic, model-free
framework for estimating temporal collision probability distributions. Consequently, we
did not conduct a direct comparative evaluation with existing approaches.

6 Discussion and Future Work

The approach presented in Sec. 4.1 establishes a foundational framework for safety-aware
agents by integrating situational risk assessment into their decision-making processes. In
our evaluation, we considered a 5-second time horizon for collision probability estimation,
which is sufficient for making high-level driving decisions, such as merging into adjacent
lane.

While the proposed approach demonstrates promising results, it currently relies on
collision experience, which is only feasible within simulated environments such as 3D
physics engines or learned world models [26]. Consequently, bridging the sim-to-real gap
remains a crucial challenge, as transferring learned safety-aware behaviors to real-world
driving scenarios requires addressing domain discrepancies—an ongoing research topic in
the field.

Another important limitation is the scalability of neural networks in handling rare
collision events. In real-world autonomous driving, collisions are exceedingly infrequent.
This raises concerns about data sparsity, as the network may struggle to learn meaningful
patterns when collision probabilities are extremely small. A potential strategy to improve



learning efficiency under these conditions could be to apply an alternative output scaling,
such as a logarithmic transformation, to better capture low-probability events. Further
investigation is needed to explore how different output representations impact model
performance.

This work introduces a framework for integrating collision probability estimation into
standard RL pipelines. However, our evaluation has so far been limited to a single fixed
policy, focusing only on policy evaluation. Future work will extend this framework to
iteratively improve policies through reinforcement learning, enabling an agent to actively
optimize its behavior based on safety-aware collision probability estimates. Exploring
this direction will be crucial for realizing fully autonomous, risk-aware decision-making in
complex environments.

7 Conclusion

This paper presents a safety-aware Al framework that estimates collision probability dis-
tributions and seamlessly integrates them into the reinforcement learning (RL) framework.
Unlike existing RL approaches that rely on indirect safety measures, our method provides
an explicit and interpretable risk assessment mechanism. So far, we have demonstrated
successful policy evaluation, and in future work, we will investigate how our framework
can be leveraged for policy improvement in safety-critical scenarios.
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