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Abstract: One of the challenges for the assessment of automated driving systems (ADS) is the
definition of reasonable release thresholds. Scenario-based reference models, like the ”competent
and careful human driver” introduced in UN regulation No. 157, can be integrated into a larger
scenario-based testing process within a safety assessment program for ADS. This article extends
the goal structuring notation (GSN) developed in the VVM project by a practically applicable
methodology to derive scenario-based “competent driver” models from human reference driver
data, which can serve as scenario-based assessment criteria. Based on an established role and
procedures for safe on-road testing, the in-vehicle fallback test driver (IFTD), including presence
of an in-cab safety conductor (SC) and adhering to a variety of safety management controls,
is used as a human reference driver representing a competent and careful driver. The model
development methodology is piloted using three collected on-road driving datasets.
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1 Introduction

Scenario-based testing has become a valuable component in state-of-the-art approaches
for testing an automated driving system (ADS) [1]. As ADS deployment is in its infancy
with real-world data lacking, particularly for commercial motor vehicles equipped with
ADS according to SAE Level 4 [2], a prospective safety assessment has to be performed
to predict the impact on traffic safety [3]. Using so-called criticality metrics, risks are
identified, eliminated or reduced during development to a reasonable level [4]. Distin-
guishing what is reasonable from unreasonable is one of the more challenging elements
of safety assessments, and so a variety of approaches are used, including comparing ADS
performance relative to humans.

To establish language and qualitative reference points, Blumenthal et al. [5] inter-
viewed different stakeholders and discussed multiple aspects of safety in their report ”Safe
enough,” including safety as a threshold based on human performance. Using an aver-
age human driver for benchmarking is discussed as an ”unsatisfying option, [whereas a]
better-than-average, or safe, human driver is a preferable alternative” [5]. This principle
was included in UN regulation No. 157 for active lane keeping systems (ALKS) [6], which
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defines a ”competent and careful human driver” as the reference for collision avoidance
performance and is the first UNECE regulation allowing type approval of SAE Level 3
systems [2]. Considering social acceptance of ADS, the German ethics commission on
automated and connected driving proposed that an ADS needs to ”promise at least a
reduction in damage in the sense of a positive risk balance” [7]. While alignment on the
definition of a reasonable human reference for ADS and the implementation of such a
reference are subject to ongoing discussion among researchers, industry, society broadly,
regulators and policymakers, this paper contributes to this discussion in the following
areas:

Section 3 proposes an extension of the goal structuring notation (GSN) forming the
VVM safety argumentation [8] to include the derivation of a competent driver model
based on collected human driving data. As the basis for a competent driver model, the
in-vehicle fallback test driver (IFTD) [9], supported and monitored by an in-cab safety
conductor (SC), is proposed as a baseline alternative to an average driver. Section 4
applies the methodology to collected real-world data from IFTDs’ manual on-road driving
and compares it to observational drone video recordings of a single highway site. This
site collection, and the term ‘average’ is used as a stand-in to represent what, in the
final application, would likely need to be a carefully designed, multi-site, multi-condition
driver data set to cover the intended operational design domain (ODD). The commonly
used intelligent driver model (IDM) [10] for the lead vehicle (LV) following scenario is
calibrated based on the IFTD data. In the last step, the IFTD model is applied to an
on-road dataset from an ADS system under test (SUT) to evaluate the similarity of ADS
behavior to the competent driver model in contrast to the average driver model. This
paper introduces a proposed method that might be used for comparing ADS performance
to human performance, recognizing a need to further develop the method and establish
what scale of data is appropriate for use as model inputs. Section 5 provides a conclusion,
discussion of limitations and outlook of future work.

2 Scenario-Based Safety Assessment

Scenario-based testing describes and tests within an ODD in a structured and scalable
approach that complements a suite of test methods including mileage accumulation ap-
proaches [11]. In the VVM project a safety argumentation structure based on a goal
structuring notation was developed and includes an argumentation for the absence of un-
reasonable risk [8]. In addition to a traceable derivation and execution of test cases based
on the system specification, release criteria and corresponding thresholds are required.
Whereas the VVM argumentation provides an overall structure, it does not provide exam-
ples on how to apply the method or define release thresholds. Salem et al. [12] emphasize
the definition of acceptance criteria as an indispensable part of societal discussion, but do
not consider it in the scope of their work on the risk management core.

Favarò et al. [13] suggest organizing the evaluation of unreasonable risk at an aggregate-
level and event-level. An example of a criterion to quantify the risk at an aggregate level
is the collision rate estimation including the estimation error as shown by de Gelder and
Op den Camp in [14]. Having restricted included data to represent the ODD and having
selected events such that the selection process maintains the intent of the analysis, crash
statistics can be developed and used to evaluate the ADS performance relative to the hu-



man driver performance [15]. Whereas the aggregated view provides a high-level positive
or negative risk indication, scenarios with an ADS performance better or worse than the
human driver could unintentionally be lost within the aggregate measure. For example,
deploying an ADS exclusively using aggregate-level measures could lead to unreasonable
risk in scenarios that might be controllable for a human driver. Consequently, additional
event-level measures are recommended by Favarò et al. [13] to ensure that human perfor-
mance is achieved or exceeded in each scenario. A practical way to apply such event-level
measures is through so-called performance reference models. In addition to the models in
UN regulation No. 157 [6], several models have been developed through industry efforts,
including the non-impaired, with eyes on the conflict (NIEON) model [16], the stochastic
cognitive model (SCM) [3], or the responsibility sensitive safety (RSS) model [17].

Whereas most of the previously mentioned performance reference models concentrate
on collision avoidance, Tejada et al. [18] propose a practical methodology for the defi-
nition of competent driving with the focus on social and responsible driving or ”road-
manship” [5]. This approach extracts driving rules and recommendations from driving
manuals and formalizes them using assertions. Based on human data collected in a nat-
uralistic driving study (NDS), the application of the assertions is determined. To define
thresholds for competent driving, annotations of driving instructors are used to define
the boundary between acceptable and unacceptable driving and extract corresponding
assertion thresholds. The assertions are then used to describe the acceptable ”envelope
of operation” representing good roadmanship [18].

With the goal of defining a competent human driving model, a variation of the method-
ology proposed by Tejada et al. [18] is employed here, focusing on nominal driving and
roadmanship. In this approach continuously recorded manual driving data from highly
trained drivers (IFTDs), instead of driving instructor annotations at specific points-in-
time, is used to represent competent driving.

3 Methodology

Given the interest in including the human reference in a safety assurance process, this
proposed methodology aims to answer the question of how competent driving can be
defined. The four steps of the proposed methodology for the data collection, model
derivation and ADS assessment in comparison to the selected human reference driver are
introduced in the following sections.

Fig. 1 shows the three strategies resulting from the methodology, extending the GSN
developed in the VVM safety argumentation [8]. The linked sub-goals and solutions are
discussed in the application example (see section 4). Note that these steps are intended
as one method within a variety of approaches to define complementary risk acceptance
criteria, indicated by the undeveloped element decorator below ”Strategy 12”.

3.1 Selection of the human reference driver

The concept of using a human reference for competent driving will be called ”human
reference driver” in the following and can be used to derive both aggregate- and event-level
acceptance criteria (see Strategy 12 in Fig. 1). As mentioned, the UN regulation No. 157
for ALKS [6] is the first standard incorporating a limited-scope ”competent and careful”
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Figure 1: GSN from the VVM safety argumentation [8] extended (grey) to apply a com-
petent driver model based on a selected human reference driver



human reference model. From an industry perspective, human drivers play an important
role as test drivers to ensure safe public road testing. SAE J3018 [9] defines a fallback
test driver as a ”person specially trained and skilled in supervising the performance of
prototype ADS-operated vehicles in on-road traffic for testing purposes.”

As mentioned by the Automated Vehicle Safety Consortium (AVSC) best practice [19],
”an IFTD becomes a conventional (test) driver” when performing the complete dynamic
driving task (DDT). Nevertheless, the term IFTD will be used for data collected with
the driver performing the complete DDT, to emphasize that the selection and training
of an IFTD differentiates the IFTD from a distribution of average driver performance
(Solution 1.1). In addition, SCs are currently used to support and monitor the IFTD by
leading and/or coordinating the remaining testing tasks [20].

Based on the established role of the IFTD, we propose using the IFTD accompanied by
a SC as possible reference for the definition of competent driving (Solution 1.2). Whereas
the main reason for using IFTDs is a safe response to unexpected hazardous operating
situations during public road testing, fulfilling socially accepted driving standards is also
taken into account.

3.2 Data collection

The definition of the human reference driver has a strong influence on the necessary data
collection and follows the scenario-based testing process (Strategy 13). If the average
driver is considered, an NDS like SHRP2 [21] or drone data [22] can be used to characterize
the behavior and performance of drivers broadly or in specifically relevant ODD conditions
or scenarios. For safety-critical scenarios, accident databases like GIDAS [23] or CRSS [24]
serve as a potential source. Whereas this allows an aggregated comparison, accident
databases typically do not provide sufficient detail for the derivation of a driver model.
If a selected human driver like the IFTD serves as a reference, a custom driving data
collection can be performed. The results for the selected reference driver can then be
compared to larger datasets from an NDS [25].

3.3 Model derivation

For a competent human driver model, a generic model applicable to all kinds of traffic
scenarios is preferable. As this is just as challenging as the development of an ADS itself, a
scenario-based evaluation and calibration to the scenarios found within the intended ODD
is a more targeted, and therefore feasible, approach. The main benefit is that a detailed
behavior model depending on the corresponding scenario can be used and directly applied
in the scenario-based testing process (Strategy 13). This approach requires a scenario
identification method to select the data as a basis for the model derivation [26,27].

3.4 ADS assessment

Based on the derived driving model, under our proposed approach, competent driving
behavior is measured by the similarity of ADS behavior to the competent driver model.
This is based on the assumption, that an unreasonable deviation of ADS behavior from
the competent driver model could lead to traffic disturbances and possibly hinder social
acceptance of ADS [18]. The scenario-based model definition allows a seamless integration



into the scenario-based testing process and is traced in the GSN (Strategy 14). The
similarity of ADS driving behavior to the model can be linked to the overall release
argumentation as a safety performance indicator (SPI), focusing on one or both areas of
nominal driving and safety-critical scenarios depending on the scope of the competent
driver model.

4 Application

As a practical example, the proposed methodology is applied and evaluated using three
collected real-world datasets described in this section.

4.1 Selection of the human reference driver

The IFTD fulfilling the complete DDT while being accompanied by a SC (see section 3)
is proposed as the human reference driver to model competent driving in this applica-
tion example. Specifically, we consider Torc IFTDs driving class 8 (gross vehicle weight
rating>33.001 lbs) trucks.

4.2 Data collection

The first step for the data collection is the specification of the ODD and the SUT. For
this application example, the ODD was restricted to highway driving in the southwest
region of the USA. Highly automated class 8 trucks (SAE Level 4 [2]) are considered as
the SUT.

4.2.1 IFTD dataset

The IFTD dataset was collected in on-road test drives with class 8 trucks, while the IFTD
was performing the complete DDT manually. As the goal is to create a competent driver
model and not to evaluate individual driver performance, the 23 individual Torc IFTDs
involved in the data collection are treated as a group in the analysis. Various sensors,
including camera, radar and lidar in combination with a proprietary object detection
algorithm were used to extract the properties of the ego vehicle and all traffic participants.

4.2.2 Drone dataset

For the purpose of providing data for average driver modeling, a drone site data collection
was used [28]. A total of six hours of drone recordings was collected for one location on
the Interstate 40 near Albuquerque, New Mexico. The field of view captured approxi-
mately 300 meters in both driving directions with a speed limit of 65mph (see Fig. 2).
A 3D detection and tracking of all traffic objects was performed by DeepScenario1 using
computer vision algorithms. The object dimensions and movements are reconstructed in
metric space and given in a high-definition map of the recorded area.

The main benefit of drone data is the unobstructed bird’s-eye view on all traffic par-
ticipants. From a scenario perspective, each recorded class 8 truck can be considered as

1https://www.deepscenario.com/



Figure 2: Drone recording annotated with
3D bounding boxes from DeepScenario

System under Test

Gap size s

v v +∆v

Figure 3: LV following scenario

the ego vehicle, leading to an increased number of captured scenarios per time for the
creation of an average driver distribution from the recording site. The total number of
detected vehicles in the six-hour dataset is shown in Table 1.

Car Class 8 truck Other truck Bus Motorcycle Total
7657 2658 4539 43 59 14956

Table 1: Numbers of vehicles included in the drone dataset

4.2.3 Scenario identification

In the next step, scenario identification on both datasets is performed based on the Street-
Wise method [26]. First, all activities (e.g., acceleration or deceleration) of the vehicles
are extracted. Second, the positions of all vehicles are matched to the map and lane
assignments are created. Third, scenarios are identified based on a specified sequence of
activities. In the last step, scenario parameters like the time gap to the LV are calcu-
lated. In this example, car-following behavior is investigated with the following scenario
definition:

1. Ego vehicle is a class 8 truck
2. Steady-state car-following: LV acceleration between −2.0m s−2 and 2.0m s−2

3. Highway with speed limit of 65mph
4. Drone data captured only flowing traffic: lower limit of mean speed in IFTD sce-

narios set to the minimal value of 36.1mph from the drone data
5. Minimum scenario duration of 2 s

Fig. 3 shows the main parameters used for the LV following scenario.
As a result from the scenario identification, a total of 3068 scenarios were identified in

the IFTD dataset and 1029 scenarios in the drone dataset.

4.2.4 Comparison of datasets

To substantiate the selection of the manual driving IFTD data as a reasonable reference
for competent driving, the following hypothesis was investigated by a comparison of the



IFTD and drone dataset (Goal 16): ”The Torc IFTD accompanied by a SC is a reasonable
reference of competent and careful driving in contrast to an average driver.”

In a NHTSA report on pre-crash scenarios, Toma et al. [29] identified traveling too fast
and unsafe following distance as main contributing factors for rear-end collisions of heavy
trucks (see Fig. 3). Both factors were investigated for the drone site average driver and
IFTD. The distribution of the mean ego speed for the drivers from the IFTD and drone
dataset with a speed limit of 65mph is shown in Fig. 4a. The mean of the distribution
of speeds for the IFTD samples was 57.1mph (standard deviation (SD) 6.01mph) and
3% of the scenarios exceeding the speed limit of 65mph. The mean of the distribution
of speeds for the drone samples was 60.4mph (SD 5.81mph) and 20% of the scenarios
exceeding the speed limit.
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Figure 4: Distributions in the LV following scenario

Fig. 4b shows the distribution of the mean time gap during the scenarios. The mean
value of the mean time gap was 3.49 s for the IFTD samples (SD 1.09 s) and 2.74 s for the
drone samples (SD 1.23 s). A time gap below 2 s occurred in 10% of the IFTD scenarios,
compared to 32% for the drone data. We note that small time gaps are dependent on
other traffic participants’ behavior and cannot be avoided completely, e.g., if a cut-in of
another vehicle in front of the ego precedes the LV following scenario, the initial time gap
can be low until a larger following distance is created.

Extensive selection and training processes qualify Torc IFTDs. This includes the
review of driving records and experience as well as classroom, proving ground and on-
road training. Based on the collected data, the IFTD keeping lower speeds and reducing
the occurrence of small time gaps supports the hypothesis that the IFTD is a reasonable
representation of competent and careful driving compared to the drone site average driver
(Solution 2). Overall, speeding was observed six times more frequently and with higher
maximum speeds by the drone site average driver compared to the IFTD. The mean time
gap for the IFTD was 27% larger compared to the drone site average driver, with three
times fewer occurrences of time gaps below 2 s.



4.3 Model derivation

Based on the identified scenarios, a suitable driver behavior model must be selected and
calibrated to the IFTD data in order to derive a competent driver model. For the con-
sidered LV following scenario with limited deceleration, longitudinal car-following models
are available. We chose the widely-used IDM developed by Treiber et al. [10] to derive
an IFTD model for the LV following scenario. The IDM can represent multiple aspects
of single-lane car-following, including accelerating on a free road, approaching a slower
or stopped LV and actively modulating speed while following a LV [10]. The IDM’s in-
puts include the ego vehicle longitudinal velocity v, the relative longitudinal velocity ∆v
and bumper-to-bumper distance s to the LV (see Fig. 3). The model parameters are the
maximum acceleration a, the desired deceleration b, the acceleration exponent ∆, the
minimum distance s0 and desired time gap T0 to the LV and the desired ego velocity v0.

The desired distance s∗ and acceleration v̇ of the IDM are calculated as:

s∗(v,∆v) = s0 +max

(
0, vT0 +

v∆v

s
√
ab

)
(1)

v̇ = a

[
1−

(
v

v0

)δ

−
(
s∗(v,∆v)

s

)2
]

(2)

In the next step, we use the global optimization algorithm called DIRECT-SQP, which
was proposed by Li et al. [30] to calibrate the IDM to recorded driving data. As objective
function the sum of squared velocity errors between the recorded velocity v and the
simulated velocity v̂ is selected. For the calculation of the discrete-time model, a fixed
update time interval of 50ms (20Hz) was used for both datasets. N is the number of
time steps and M is the number of scenarios used for the calibration. The calibrated
parameters θ = [a, b,∆, s0, T0, v0] are the solution to the optimization problem:

min
θ

g(θ) =
M∑
i=1

N∑
j=1

(vi − v̂i(θ))
2 (3)

The same approach could also be applied to objective functions including the time
gap [10] or the safety objective function proposed in [31]. Table 2 shows the calibrated
parameters for the IDM for the IFTD dataset using the defined parameter boundaries.

a[m s−2] b[m s−2] δ[-] s0[m] T0[s] v0[m s−1]
[min, max] [0.1, 6.0] [0.1, 6.0] [2.0, 4.0] [2.0, 5.0] [0.5, 6.0] [20, 40]

IFTD 0.26 6.00 2.00 5.00 1.92 30.67

Table 2: IDM parameter bounds used for optimization and results for IFTD dataset

The acceleration exponent δ=2 is at the lower optimization boundary, indicating
smoother reduction of acceleration for trucks when reaching the desired velocity, compared
to the value δ=4 commonly used for cars [10]. The minimum distance s0=5m is at
the upper boundary of the interval specified based on literature values and higher than
the commonly used value of s0=2m for cars [31]. The increased value represents the
practical meaning of the parameter, as truck drivers must keep a larger distance to the
vehicle in front compared to cars, in case they must maneuver or cut out of standing



traffic. Therefore, we choose the optimization results δ=2 and s0=5m as fixed values,
which additionally reduces computation efforts.

Next, we apply the bootstrap method to estimate the distribution of car-following
model parameters, as performed in [32]. The optimal solution is calculated for each re-
sampled dataset using the DIRECT-SQP optimization approach, until the desired number
of samples is achieved. The global optimal solution, the sample means and 95% confi-
dence intervals (CI) of the IDM parameters from 1000 bootstrap samples are shown in
Table 3 for the IFTD, drone and SUT data (Solution 3).

a[m s−2] b[m s−2] T0[s] v0[m s−1]
Optimal solution 0.26 6.00 1.92 30.67

IFTD Bootstrap mean 0.26 6.00 1.93 30.74
95% CI (0.22, 0.30) (6.00, 6.00) (1.78, 2.10) (30.01, 31.70)

Optimal solution 0.34 6.00 1.04 39.32
Drone Bootstrap mean 0.35 6.00 1.02 38.68

95% CI (0.30, 0.44) (6.00, 6.00) (0.86, 1.18) (35.42, 40.0)
Optimal solution 0.28 4.36 2.68 33.37

SUT Bootstrap mean 0.28 4.34 2.69 33.49
95% CI (0.22, 0.33) (3.74, 4.91) (2.47, 2.95) (32.02, 35.42)

Table 3: IDM optimal solutions, parameter means and 95% CI

The results for the drone data show a 46% lower value of T0 and a 28% higher value
of v0 compared to the IFTD model, representing the lower following distances and higher
maximum speeds of the drone site average driver compared to the IFTD as discussed in
subsection 4.2.

4.4 Assessment of ADS behavior

In the last step, the derived competent driver model is used for the assessment of ADS
behavior. Given a recorded scenario of the SUT, the competent driver model is simulated
using the initial speed and gap size of the ego vehicle as well as the recorded speed of
the LV as input (using 50ms/20Hz for the calibration). The simulated IDM trajectory is
then compared to the recorded trajectory of the SUT.

For this application example, 1147 scenarios from real-world testing of an ADS as SUT
were collected. The same ODD, scenario definition and scenario identification method are
used as described in subsection 4.2, effectively creating a unified basis from different data
sources. The calibration and bootstrap approach is applied to the real-world testing
dataset of the SUT. The results shown in Table 3 include the highest value of the desired
time gap T0, leading to the largest following distances of the three models.

In the next step, similarity of SUT behavior to the derived competent driver model is
evaluated. We compare the results by calculating the root mean squared error (RMSE)
between the simulated and recorded speed for each combination of the global optimal so-
lutions of the IFTD, drone and SUT and the three underlying datasets used for calibration
(see Table 4).

First, the RMSE of speed for each dataset shows that the lowest error per dataset is
achieved for the optimal IDM solution fitted to the corresponding dataset, verifying the
result of the IDM calibration. Second, the prediction error of 0.502m s−1 calculated with



Optimal IDM solution
RMSE [m/s] IFTD Drone SUT
IFTD dataset 0.548 0.981 0.602
Drone dataset 0.563 0.429 0.732
SUT dataset 0.502 1.154 0.490

Table 4: RMSE of speed calculated for each combination of IDM parameters and datasets

the optimal IFTD parameters for the SUT dataset is only 2% higher compared to the
fitting error of 0.490m s−1 for the optimal SUT parameters, indicating a similarity in the
behavior of IFTDs and SUT. Third, the prediction error of 1.154m s−1 calculated with
the optimal drone parameters for the SUT dataset is 136% higher compared to the fitting
error of 0.490m s−1 for the optimal SUT parameters, showing a significant difference in
drone site average driver and SUT behavior.

Overall, the difference between the prediction errors and the fitting error for the SUT
dataset shows a higher similarity between SUT and IFTD behavior compared to the drone
site average driver representation. The result confirms that, in contrast to the drone site
average driver, the SUT aligns more closely with the behavior defined by the competent
driver model (Solution 4).

5 Conclusion and future work

This article proposes a future methodology for the selection and derivation of a competent
driver model based on the human driver. The methodology is integrated into the safety
argumentation GSN from the VVM project, providing a practical applicable example to
derive risk acceptance criteria based on a competent driver model. Building on the estab-
lished role of the IFTD for safe public road testing, we explored the use of IFTD driving
as a data source for a competent driver model. We show that through the comparison of
this reference driver to a drone site average driver, the IFTD-informed competent driver
model is useful as a reference. Finally, evaluating the fitting and prediction errors of the
IDM on ADS SUT data collected during real-world testing shows the higher similarity of
the SUT behavior to the competent driver model in contrast to the drone site average
driver model. The method provides a promising approach to define competent driving
and average driving within a scenario, and subsequent steps that could be used to assess
ADS performance against these benchmarks.

Limitations of the application example include that effects not considered in the com-
petent driver model can lead to false positives for the detection of deviations. Whereas
the performed evaluation of the fitting and prediction errors shows the overall similarity
between the datasets, a reasonable case-by-case comparison depends on the driver model.
As the IDM only considers the behavior of the LV, a reaction to vehicles in adjacent lanes
or in various weather conditions was not taken into account. To accurately represent the
influence of other factors on human behavior, additional effort to extend the competent
driver models would be required. Moreover, the collected limited datasets only serve as a
pilot, and more data, including consideration of uncertainty, would be required for transi-
tion of these methods to an commercial application. Future work includes the application
of the methodology to further scenarios and driver models. The approach could also be
extended to onboard monitoring to detect deviations from the competent driving model.
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