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Abstract: This paper demonstrates the potential of implementing the lateral Motion Sickness Dose
Value (MSDV) model in motion planning to reduce motion sickness in automated vehicles. In our
study, we evaluate motion sickness ratings of participants experiencing two different trajectories: a
standard trajectory, with larger lateral accelerations, and a comfort trajectory, with reduced lateral
accelerations. We fit the MSDV model to the motion sickness ratings of passengers who experienced
the standard trajectory and use this fitted model to assess the comfort trajectory regarding motion
sickness. A comparison of this MSDV model-based assessment with the passenger’s motion sickness
ratings of the comfort trajectory shows that a comparable fit with minimal loss in accuracy is achieved.
Thus, our study demonstrates that the MSDV model can be used to predict motion sickness symptoms.
These findings highlight the potential of utilizing the MSDV model in trajectory planning, as a reduced
MSDV correlates with reduced passenger symptoms.
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1 Introduction

Automated vehicles have the potential to transform mobility, offering enhanced safety, energy
efficiency, and comfort. However, motion sickness encountered in automated vehicles may
hinder the broad adoption of automated vehicles due to the discomfort resulting from related
symptoms such as nausea, dizziness, and sweating [1]. In [2], the authors report that 6%
to 10% of passengers riding in self-driving vehicles often or always experience some level of
motion sickness. This high occurrence of motion sickness is a potential barrier to the acceptance
of automated driving functions and self-driving vehicles. Paradoxically, a central promise of
automated vehicles contributes to this issue: freeing passengers from the task of driving to focus
on different activities, such as working or relaxing. The shift in focus away from perceiving
the vehicle’s motions is the main contributing factor to motion sickness [1]. Whereas this
phenomenon can also occur when riding as a passenger in a vehicle driven by a human, it is
hypothesized that the driver of a vehicle acts as a motion sickness predictor and tends to drive
such that motion sickness is minimized [3]. This natural motion sickness mitigation is not
present in automated vehicles, and thus, it is essential to integrate insights from research on
motion sickness into the motion generation of automated vehicles [4].

In the vehicle automation architecture, motion planning holds the greatest potential for
minimizing motion sickness alongside route planning that can avoid roads that might induce
motion sickness [5]. The main objective of motion planning is to ensure that the resulting
reference trajectory is dynamically feasible and collision-free within a given planning horizon
[6]. In addition, motion planning provides the flexibility to optimize for secondary objectives
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that require a considerable prediction horizon, such as motion sickness. This flexibility allows
for planning collision-free trajectories that additionally minimize motion sickness [5].

A motion sickness model is needed to optimize for motion sickness within the planning
horizon of motion planning. A motion sickness model does not necessarily need to predict the
susceptibility of an individual person to motion sickness. However, the input-output behavior
of a motion sickness model should at least represent how potential motion sickness triggers that
are common to various persons affect their motion sickness susceptibility. With such a model,
the planner has the potential to mitigate the related motion sickness triggers by minimizing
the motion sickness that the employed model predicts.

The contribution of this work is to demonstrate that the investigated motion sickness model
offers the capability of representing the effect of motion sickness triggers on the motion sickness
susceptibility of various persons.

The outline of this paper is as follows. In Section 2, different motion sickness models are
presented and compared, and a model is selected for investigation in a study. In Section 3
we present the design of the study. The results of the study are presented and discussed in
Section 4.

2 Motion Sickness Models

There are two different approaches for describing motion sickness that are commonly used:
conflict theory and the concept of frequency-based stimuli. According to conflict theory, mo-
tion sickness results from a sensory conflict between inputs provided by the visual, vestibular,
and proprioceptive systems of the human body [7]. To unify various types of motion sickness
resulting from conflicting sensory inputs, the subjective vertical conflict (SVC) theory suggests
that motion sickness arises if a vertical that is perceived by sense organs is in conflict with
the subjective vertical that is determined based on previous experiences [8]. The SVC theory
is the basis for the widely-used six degrees of freedom (6DOF)-SVC model presented in [9],
which predicts the motion sickness incidence (MSI). The MSI describes the share of individuals
vomiting under specific motion conditions [10]. The 6DOF-SVC model predicts the MSI by
considering three-dimensional movements, which makes it suitable for modeling motion sick-
ness in (automated) driving. The MSI is adapted in current research, as it cannot represent
subjective and mild symptoms [11].

The SVC model is still an active research area [12]. It is based on a white-box approach and
aims to describe the relationship between conflicting sensory perceptions contributing to motion
sickness. The SVC model models motion sickness based on the acceleration of the passenger’s
head. This data can be measured in laboratory studies using head-mounted acceleration sensors,
and thus, the SVC model is useful for understanding and describing motion sickness. However,
using the acceleration of the passenger’s head makes it particularly challenging to integrate the
model into motion planning, as this requires an additional head and body model that maps the
vehicle acceleration to the acceleration of the passenger’s head [13], [14], [15]. In addition, it is
challenging to parametrize the SVC model due to its large number of parameters, and there is
no assurance that the model will avoid generalization errors if applied to new scenarios.

In contrast to the conflict theory, the frequency-based concept of describing motion sickness
assumes that repeated exposure to motion stimuli accumulates a dose that results in motion
sickness symptoms. Based on this, the authors in [16] develop the Motion Sickness Dose Value
(MSDV) model that is used in the international standard for evaluating human exposure to
whole-body vibrations [17]. The authors in [18] call for considering vibrations in the longitudinal
(x), lateral (y), and vertical (z) direction for describing motion sickness, which results in the



following representation of the MSDV model:

MSDV =

√√√√ ∑
i={x,y,z}

(
Ki

∫ T

0

(ai,w (t))2 dt

)
, (1)

in which Ki is a weighting factor that indicates the impact of the accumulated, frequency-
weighted longitudinal, lateral, and vertical acceleration

ai,w(t) = ai(t) ∗Wi, (2)

i ∈ {x, y, z} on the MSDV. The operator ∗ represents the convolution operator. Figure 1 depicts
the transfer functions of the frequency weights Wx and Wy used in [19] and [20].

10−3 10−2 10−1 100 101
−100

−50

0

Frequency (Hz)

M
a
gn

it
u
d
e
(d
B
)

longitudinal (x)

lateral (y)

Figure 1: Transfer functions of frequency weights for longitudinal and lateral acceleration are
depicted, as defined in (2).

The MSDV model is an empirical model that relies on fitting transfer functions to the
frequency behavior of data collected in studies. Thus, the model is classified as a black-box
model. Nevertheless, it is interpretable and easy to adjust, which makes it the state of the art
in research that is associated with integrating motion sickness models into motion planning.

We choose to investigate the MSDV model in our study due to its simplicity for being
implemented in motion planning. This complies with the results of [5], [21], [22] that demon-
strate that using the MSDV model in motion planning to reduce the MSDV value of reference
trajectories works well in simulation. These promising results and the simplicity of the MSDV
call for evaluating whether the reduction of the MSDV value translates into an improvement
in passenger motion sickness ratings. Previous studies show that the MSDV model is effective
in modeling experienced mean motion sickness in vehicles for specific scenarios [23]. However,
it has not yet been studied how varying the maximum used acceleration impacts the severity
of passengers’ experienced motion sickness.

3 Study Design

The presented study aims to compare two different acceleration profiles w.r.t. their effect on the
motion sickness experienced by the participants. For this, the participants are separated into
two groups, each assigned to an acceleration profile. Within a group, all participants experience
the same acceleration profile, defined by a reference trajectory that is tracked by an automated
vehicle.

The testing ground used for the study is located at the Schaeffler Hub for Advanced Research
(SHARE) at the Karlsruhe Institute of Technology (KIT). We designed a closed circuit reference
path with a total length of 614m that fits on the testing ground. The reference path, depicted in



Figure 2: The reference path that is used in the presented study is depicted in orange.

Figure 2, is designed to simulate common driving maneuvers associated with motion sickness,
such as roundabouts and hairpin turns. In addition, extended straight sections that allow
for high longitudinal accelerations are integrated. The closed-circuit design enables repeated
driving, which makes it ideal for comprehensive studies.

Two reference trajectories that both follow the reference path depicted in Figure 2 but
which differ in their acceleration profiles are used in the study. The reference trajectory that
features a gentle acceleration profile is referred to as comfort trajectory, and the trajectory that
features an ambitious acceleration profile is referred to as standard trajectory. The parameters
used for planning the trajectories are presented in Table 1. The resulting acceleration profiles
of both trajectories of one lap are depicted in Figure 3.

Table 1: Parameters used for planning the comfort trajectory and the standard trajectory.

Parameter Comfort Trajectory Standard Trajectory
Target velocity vx 10m s−1 10m s−1

Longitudinal acceleration limit ax,max 3m s−2 3m s−2

Lateral acceleration limit ay,max 2.55m s−2 5.25m s−2

Longitudinal jerk limit jx,max 0.3m s−3 0.8m s−3

150 300 450 600

−4

−2

0

2

4

s (m)

a
(m

s−
2
)

ax Standard Trajectory
ay Standard Trajectory
ax Comfort Trajectory
ay Comfort Trajectory

Figure 3: Longitudinal ax and lateral ay acceleration profiles of the reference trajectories.

The study is conducted using a Hyundai IONIQ 5 that is equipped with a drive-by-wire
system, which allows controlling the steering, throttle, and braking systems. A tracking con-
troller [24] is utilized to ensure the vehicle tracks the reference trajectories repeatedly. The



study is conducted with minimal changes in environmental influences, e.g., temperature and
lighting. This ensures that the cause of motion sickness is consistent across all participants.

The Motion sickness susceptibility questionnaires (MSSQ) [25] is used prior to the study to
assess the motion sickness susceptibility of the participants. It is a standardized tool designed
to measure an individual’s susceptibility to motion sickness. During the study, the MIsery
SCale (MISC) [26] is employed to evaluate motion sickness symptoms. The MISC captures
subjective symptoms of motion sickness on a scale from 0 to 10: 0 indicates No Problems,
Nausea-related symptoms start at 6, and 10 indicates Vomiting. Each participant must rate
their motion sickness symptoms using MISC every two minutes during the study. Participants
have the option to stop the study at any time and are recommended to do so if their MISC
rating reaches 6.

Participants of the study are seated on the right-hand side of the vehicle, both in the front
and the rear seats. To ensure consistent visual perception of all participants, the participants
need to solve Sudoku puzzles while driving. Each drive lasts for 30min. Thus, participants
repeatedly experience the standard or comfort trajectories for multiple laps.

A total of 18 participants drove the standard trajectory, with 9 of them in the front seat
and 9 of them in the rear seat. Equivalently, 16 participants drove the comfort trajectory, with
8 of them in the front seat and 8 of them in the rear seat.

Note that unlike in manually driven studies [23], [27], our study is designed so that the
variance in motion sickness ratings is as exclusively attributed to the individual motion sickness
response as possible.

4 Results

The evaluation of the study shows that there is a significant difference between the participants’
MISC ratings, even within the two groups of participants. This can be seen in Figure 4, which
depicts the MISC self-rating of participants experiencing the standard trajectory.
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Figure 4: Participant MISC ratings experienced acceleration from the standard trajectory in
both front and back seats.

At the end of the drives, either after 30min or at an early stop, every participant experienced
some symptoms of motion sickness, rated at least 3 on the MISC scale. Participants in the
front seat reported slightly higher MISC ratings, with an average rating of 3.3 compared to
3.14 in the back seat. In addition, the average final rating of 6.44 of participants seated in the
front seat is slightly higher than the average final rating of 6.11 of participants seated in the
back seat. As the difference in the ratings between the front and the back seats is small, we
neglect the seating position of the participants in the following.

To compare the MSDV to the MISC ratings in the study, we use the illness rating (IR) scale
to describe the average motion sickness within a group. The authors in [16] report that the IR



ratings: 0 - All right, 1 - Slightly unwell, 2 - Quite ill, and 3 - Absolutely dreadful are linearly
related to the MSDV with the following conversion:

IR = 1/50 ·MSDV.

The MSDV model (1) uses the accelerations ai(t), i = {x, y, z}. Analyzing the frequency-
weighted, squared accelerations experienced by the participants reveals that a2y,w is substantially

larger than a2x,w and a2z,w. Particularly,
∫ T (s)

0
(ay,w (t))2 dt = 525m2 s−4 significantly exceeds∫ T (s)

0
(ax,w (t))2 dt = 15m2 s−4 and

∫ T (s)

0
(az,w (t))2 dt = 0.20m2 s−4 at the end of one lap at

s = 614m, as depicted in Figure 5. This difference results from the lateral accelerations ay(t)
being larger than the longitudinal acceleration ax(t) and vertical acceleration az(t), cf. Figure 3.
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Figure 5: Weighted, squared accelerations for the longitudinal, lateral, and vertical directions
accumulated over one lap of the standard trajectory.

According to [19], [28], the longitudinal and lateral acceleration have an equal influence
on motion sickness perception. Similarly, in [23], all weighting factors of the MSDV model
are set equally (Kx = Ky = Kz). Because of the equal influence of all accelerations in the
MSDV, the larger lateral acceleration results in a greater impact on the MSDV value. Given
this, the longitudinal and vertical accelerations are neglected in the subsequent considerations.
Therefore, the lateral acceleration is the only acceleration considered in the further application
of the MSDV model to predict the IR:

IR =
1

50

√
Ky

∫ T

0

(ay,w (t))2 dt. (3)

We fit the MSDV model to the results of the study to evaluate the effectiveness of the lateral
MSDV model in predicting motion sickness. Figure 6 depicts the MISC ratings of the standard
trajectory as well as the MISC ratings for the comfort trajectory.

First, (3) is fitted to the MISC ratings of the standard trajectory using Non-Linear Least
Squares (NLS) regression. To comply with the findings of [16], the fitting process is performed
such that an IR of 3 corresponds to a MISC rating of 10.

The fitting yieldsKy,s = 0.649 and an Root Mean Square Error (RMSE) of 1.97 on the MISC
scale. In comparison, the lateral acceleration weighting parameter (Ky,d = 0.55) determined
in [20] differs by approximately 15% from the value identified in our study. Both predictions
of the MSDV model that only uses the respective lateral acceleration weighting parameter are
presented in Figure 6. The slight difference in the weighting parameter can be noted in the
trajectory of the IR, in which the fit with Ky,s shows minor deviation from the prediction that
uses Ky,d of the standard trajectory.
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Figure 6: Participants MISC ratings compared to MSDV predictions with Ky,s, Ky,d, and Ky,c

for drives with standard and comfort trajectories.

To demonstrate the scalability of the model to different inputs, we extrapolated the IR
response using the previously identified parameter Ky,s and the acceleration data of the comfort
trajectory. The MSDV model with Ky,s successfully predicts the MISC ratings of participants
who experienced the comfort trajectory, resulting in an RMSE of 1.62 on the MISC scale. The
reduction in RMSE compared to the fit for standard trajectory MISC ratings can be explained
by the lower absolute values observed in the MISC ratings of the comfort trajectory.

To further evaluate the model’s fit to reduced accelerations, we perform a second fitting of
the lateral MSDV model to the MISC ratings of the comfort trajectory using NLS regression.
The resulting value of Ky,c results in a RMSE of 1.49, which is smaller than the RMSE of the
prediction. Both the prediction with Ky,s and the fit with Ky,c are depicted in Figure 6, which
highlights the difference between the two. Note that the IR prediction of the standard trajectory
using Ky,s (fitted to higher accelerations) performs only 8.7% worse in terms of the RMSE
compared to fitting the model directly to the MISC data of the comfort trajectory. Therefore,
reducing the predicted IR by decreasing the lateral acceleration of the driven trajectory leads
to a reduction of the MISC ratings.

Our results support the idea of incorporating the lateral MSDV model into motion planning
algorithms to minimize the predicted lateral IR, and consequently to mitigate motion sickness
symptoms for passengers in automated vehicles. This complies with current research showing
that planning algorithms can generate trajectories that minimize the predicted IR [5], [21], [22].

5 Conclusion

This study validates that the lateral MSDV model is an effective tool for predicting motion
sickness in automated driving scenarios. By fitting the model to experimental data, we derived
a lateral acceleration weighting parameter Ky,s that closely aligns with established values pre-
sented in related literature. The MSDV model demonstrates scalability and accurately predicts



motion sickness levels across different trajectories with varying acceleration profiles. Particu-
larly, the MSDV model fitted to higher lateral accelerations (standard profile) performed well
compared to a separate fit to lower accelerations (comfort profile). These findings highlight the
potential of the MSDV model to be used in motion planning. Employing the MSDV model in
motion planning has the potential to enable automated vehicles to minimize motion sickness
through reduced lateral accelerations and, thus, to enhance passenger comfort and acceptance
of autonomous driving technologies.
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