
V-model-based Refactoring of an Automated Valet
Parking System

Mohamed Amine Mejri, Felix Meyer, Marius Westendorf,
Marcel Kascha, Silvia Thal, and Roman Henze∗

Abstract: With Automated Valet Parking (AVP), a vehicle is guided to perform a parking use-

case. AVP systems can be integrated either in the vehicle or in the infrastructure of the parking

facility. Obtaining both vehicle-centered and infrastructure-based systems offers a redundant

AVP solution. However, developing each system separately is time-consuming and prevents the

knowledge transfer. Therefore, leveraging existing AVP systems in the development process is

required. In this work, we introduce a systematic approach to develop an infrastructure-based

AVP system by adapting an existing vehicle-centered system. We followed the V-model to define

the development stages, which facilitates the traceability of the complete process.

Keywords: Automated Valet Parking, Development Process, System Engineering, V-model

1 Introduction

Automated Valet Parking is rapidly gaining importance in the automotive field. In the
last decade, several collaborations between Original Equipment Manufacturers (OEMs)
and Tier I suppliers have been announced towards the development of AVP systems1.
The functional system architecture in AVP is derived from the general architecture in
Autonomous Driving (AD), consisting mainly of vehicle’s self-localization, environmental
perception, motion planning and vehicle control [1]. The operational design domain in
AVP shows specific characteristics, e.g. a maximum allowed driving speed of 10 km/h. To
regularize these specifications and facilitate the development, the international standard
ISO 23374 [2] provides a detailed definition of the AVP system framework, requirements
and test scenarios. These regularizations served to accelerate the standardized develop-
ment of AVP systems. Thus, AVP systems are the first certified systems in Germany
fulfilling the SAE Level 4 requirements [3]. According to [2], AVP systems can be classi-
fied into two categories. The first is a vehicle-centered system, called AVP type 1. The
system functions are integrated in an intelligent vehicle, which is equipped with the nec-
essary sensors and computation units. AVP type 2 is an infrastructure-based system,
where a central server guides a connected vehicle remotely by sending driving commands.
Perception sensors are mounted in the parking area to obtain an environment model.
AVP type 2 offers the advantage of controlling multiple vehicles simultaneously, without

∗All authors are with the Institute of Automotive Engineering (IAE), TU Braunschweig, Hans-
Sommer-Str. 4, 38106 Braunschweig, Germany (e-mail: mohamed.mejri@tu-braunschweig.de).

1https://www.bosch-presse.de/pressportal/de/en/bosch-and-apcoa-to-provide-automated-valet-
parking-technology-in-parking-garages-across-germany-250496.html



increasing the costs, since the vehicles do not have to be equipped with neither additional
environment sensors nor a computational intensive Electronic Control Unit (ECU).
The development of advanced systems, such as AVP, has pushed the automotive industry
to intersect with the IT field. Despite the fruitful combination of the two sectors, there is
a significant difference in their development processes. As highlighted in [4], developing
a vehicle’s system requires between three and five years, which is longer than the devel-
opment process of typical IT systems, e.g., smartphones. These extended development
cycles increase the criticality of issues that arise in the later development stages. As
a result, a systematic development process is required. This was statistically analyzed
in [5] through a comparison of 20 case studies of product successes and failures in the
automotive market. The study indicated that the criticality of the development process
surpasses other important key factors, such as safety and fuel economy. Since AVP sys-
tems can be implemented in two different types, an efficient AVP development process
could involve leveraging one AVP type in the development process of the other. In this
paper, we present a system engineering guideline for designing, developing, and testing
an AVP type 2 system, referring to an existing Type 1 system as a baseline.

2 Methodology

Modularity and scalability are the major challenges targeted in system development. A
modular system is capable of being divided into subsystems, which facilitates the main-
tenance and integration of the different system components. A scalable system shows a
flexibility for further extension to adapt to increased complexity and changes in the use-
cases. Both aspects must be addressed starting from the early stages of the development
process, and not during the implementation stages [6]. For this purpose, one of the appro-
priate development approaches is the V-model .It facilitates traceability and refinement
during the development stages [7]. The aim of this work is to transform an AVP type 1
system into a type 2 system, which necessitates the modularity and scalability of both
systems. To achieve this, we revisit the V-model as defined in ISO 26262 [8] as a guideline
for defining the system development process. In this section, we investigate each block of
the V-model, as depicted in Figure 1, to define the development steps.

1A System Engineering Approach for Transferring Automated Valet Parking Functions 

from Vehicle to Infrastructure Intelligence - WKM-Symposium 2024, Magdeburg 

System 

Requirements

System 

Design

System 

Development

System 

Testing

System 

Validation

Figure 1: V-model of product development [8].



2.1 System Requirements

The first step involves defining the requirements for an AVP type 2 system. These are
outlined in the ISO 23374 standard [2], which also includes driving test scenarios for safety
assessment. In addition, the German Association of the Automotive Industry (VDA) has
introduced a technical guideline for the development of AVP type 2 systems [9]. This
guideline summarizes recommendations from OEMs and smart parking providers involved
in the development of AVP systems. According to [2], an AVP type 2 system consists
of four sub-systems, which are classified under management and operational interfaces,
as shown in Figure 2. The first sub-system is the vehicle backend, an external service
of the vehicle. The vehicle backend forms with the system backend the management
interface, handling organizational tasks within the AVP mission, such as sending and
approval of requests or the allocation of parking lots. The remaining two sub-systems
consist of the vehicle on-board and the system operation. The vehicle on-board can be
considered as a set of ECUs responsible for vehicle control, while the system operation is
the central computation unit within the infrastructure, controlling the vehicle remotely.
Both interfaces interact logically through messages. An AVP mission is the result of a
certain sequence of these messages. To ensure a safe driving mission, these messages must
conform to specific standards, defined as safety and functional requirements.

1A System Engineering Approach for Transferring Automated Valet Parking Functions 

from Vehicle to Infrastructure Intelligence - WKM-Symposium 2024, Magdeburg 

Operational InterfaceManagement Interface

Intelligent Infrastructure

System Backend System Operation

Vehicle Backend Vehicle On-board

Connected Vehicle

Figure 2: The configuration of an AVP type 2 system [9].

2.1.1 Safety requirements

The safety requirements are realized through safety messages within the operational inter-
face. These messages serve to supervise and ensure the redundancy of the communication
network. The safety messages run in a cycle including mainly a driving permission from
the server and a vehicle feedback. An uninterrupted transmission of these messages during
the driving mission is crucial, and any disruption would lead the mission to be aborted.
The specified safety requirements are not included in AVP type 1 systems. This must be
considered in the transfer between both systems.



2.1.2 Functional requirements

The functional requirements are designed to standardize the control of the vehicle by the
server, specifying a set of messages that must be supported by all vehicles with an AVP
type 2 system. These messages encompass both high-level driving maneuvers, such as
braking, and low-level data, including the vehicle’s state or the desired trajectory. The
validity of these messages is established, with specified expiration time intervals to ensure
safe driving. The functional requirements are fulfilled as well in the AVP type 1 system.
This facilitates the scalability of the functions to the targeted AVP type 2 system.

2.2 System Design

As defined in [10], the system design is a preliminary definition of the functional system
components, along with the derivation of the interactions and interfaces between these
components. The keynote in system design lies in the specification of the term ”system”,
which generally represents the vehicle in the case of AD [11]. AD systems, including AVP
type 1, mostly share a standard system design consisting of data retrieval, environmental
perception, driving mission planning, and vehicle control. In contrast, the type 2 system
does not maintain the defined sequential design but adopts a distributed design instead.
In this case, we distinguish between two systems: the vehicle and the infrastructure. To
derive the design of our AVP type 2 system, we start first with revisiting the design of
the baseline system.

2.2.1 AVP Baseline

We refer in this work to an existing AVP type 1 system developed by [12] as a baseline
for designing our AVP type 2 system. As illustrated in Figure 3, the system is based
on the standard AD design and implemented on the institute’s own experimental vehicle
TEASY 3, a Volkswagen Passat B8 that is equipped with LiDAR Sensors perceiving the
surrounding environment of the vehicle [13]. The motion planning has a modular design
[14], which facilitates the adaptation of the system to our use-case. The motion control
module is based on model predictive control (MPC) [15]. The work was demonstrated in
different real-world environments2, which reflects the potential of scalability of the system
to AVP type 2.

Motion Control 

(Lateral + 

Longitudinal) Vehicle CAN 

Interface

(Actuators)

Vehicle Data 

Pre-processing

Motion Planning

(Decision-making + 

Trajectory Estimation)

Environment Perception

Intelligent Vehicle

Object Detection Toolbox

Self-localization Algorithm

LiDAR 

Sensors

Figure 3: The design of AVP Type 1 system baseline[12].

2https://die-region.de/wirtschaft-forschung/innovation/autonomes-parken-im-forschungsparkhaus-
braunschweig/



2.2.2 Model Refactoring

The AVP type 1 system should be transformed into type 2 without applying fundamental
modification on the system components. This was obtained by applying model refactoring,
a software engineering technique that involves redistributing subsystems across the system
hierarchy, which enhances modularity [16]. By applying model refactoring on the design in
Figure 3, we redistribute the functionalities between a connected vehicle and an intelligent
infrastructure, consisting of a computation server, as shown in Figure 4. In case of AVP
type 2, a vehicle’s self-localization is not required. The vehicle position can be directly
estimated by the object detection from the infrastructure sensors. Low-budget surveillance
cameras replace here the LiDAR sensors, which decreases the total costs of the system.
Both subsystems are extended with a communication interface. To ensure maintaining
a consistent information flow between the modules as in the baseline model, we add a
signal adapter module to each subsystem. The block manages sending, receiving, and
forwarding the data signals in the appropriate format.

Motion Control 

(Lateral + 

Longitudinal)
Vehicle CAN 

Interface

(Actuators)Vehicle Data 

Pre-processing

Connected Vehicle

Motion Planning

(Decision-making + 

Trajectory Estimation)

Signal 

Adapter

Environment 

Perception

Object Detection 

Toolbox

Surveillance Cameras
Intelligent Infrastructure

Signal 

Adapter

Figure 4: Design of an AVP type 2 system after applying a model refactoring.

2.3 System Development

The following phase in the V-model involves extracting a system architecture based on
the previously presented design. This process begins by identifying the essential hard-
ware components. Then, a methodology for the software implementation of the system
functionalities is defined. The resulting architecture offers a comprehensive system de-
scription, facilitating not only the implementation but also the verification and validation
in the next stages [17].

2.3.1 Hardware Architecture

To implement the proposed model refactoring, a comprehensive hardware architecture
of the baseline system is required. As shown in Figure 5a, the model functions are
implemented on two computing platforms. The first is the rapid control prototyping plat-
form, dSPACE SCALEXIO AutoBox, equipped with Ethernet as well as Controller Area
Network (CAN) boards. This enables direct communication with the vehicle’s dynam-
ics ECUs and internal network to retrieve vehicle data. The second computation unit,
dSPACE AUTERA, is dedicated to the object detection and self-localization algorithms.



It is connected via Ethernet to the LiDAR sensors. For the AVP type 2 system, we re-
tained the same vehicular hardware and refactored the model functionalities, as depicted
in Figure 5b. The signal adapter was associated with the Ethernet board of the AutoBox,
thereby facilitating the sending and receiving of messages by the router. On the server-
side, a dSPACE SCALEXIO LabBox is used to run the motion planning functionalities.
An access point was connected to its Ethernet board, establishing the communication
with the vehicle’s router. For the environmental perception, the surveillance cameras are
powered and connected via Ethernet to a second computation platform, consisting of a
GPU-based server used for running the object detection algorithms.

Computing Platform Rapid Control Prototyping

Vehicle Data

CAN Board

Motion Planning

Ethernet Board

Motion Control

CAN Board Gateway

Gateway

Accelerating

Braking

Steering

Driving Dynamics ECU

Computing Platform Data Logging and Prototyping

Object Detection

Ethernet Board

Self-localization

Vehicle’s Internal Network

Ethernet

CAN

LiDAR Sensors

CAN

CAN

Ethernet

CAN

(a) Hardware architecture of the AVP type 1 system.

Computing Platform

Rapid Control Prototyping

Vehicle Data

CAN Board

Motion Control

CAN Board

Computing Platform

GPU-Server

Object Detection

Ethernet Board

CAN

CAN

Surveillance Cameras

Computing Platform

Rapid Control Prototyping

Signal Adapter

Ethernet Board

Signal Adapter

Ethernet Board

Motion Planning

Ethernet Board

Ethernet

Ethernet

Access Point

Router

Infrastructure

Vehicle

Ethernet

Gateway

Gateway

Accelerating

Braking

Steering

Driving Dynamics ECU

Vehicle’s Internal Network

CAN

CAN

Ethernet

(b) Hardware architecture of the AVP type 2 system.

Figure 5: Refactoring of the hardware architecture between both AVP types.



2.3.2 Software Architecture

The baseline functions in the AVP type 1 system are implemented in an object-oriented
manner, which facilitates redistribution and adaptation. The standardization of the mes-
sages between the vehicle and the server is obtained by the signal adapter class. Another
class, consisting of a User Datagram Protocol (UDP) socket, is required to fulfill the
designed AVP type 2 model. The Unified Modeling Language (UML) class diagram in
Figure 6 illustrates the interactions between the different system modules. All attributes
conform to the datatypes defined in the requirements of [2] and [9].
The vehicle’s software is initially implemented in MATLAB and the architecture is mod-
eled using Simulink [18]. Subsequently, the complete software package is compiled into
C code and integrated into the dSPACE platform. The same process is replicated on the
server for the modules associated with the dSPACE LabBox. For the object detection,
we utilize a commercial software that runs on a separate GPU-server.

ObjectDetection

vehicle_id: uint32

current_x: float32

current_y: float32

current_psi: float32

timestamp: float64

object_detection()

vehicle_identification()

SignalAdapter

encode()

decode()

VehicleState

current_velocity: float32

current_curvature: float32

secure_standstill: bool

encode_vehicle_state()

decode_vehicle_state()

Trajectory

current_velocity: float32

current_curvature: float32

secure_standstill: bool

encode_trajectory()

decode_trajectory()

VehiclePosition

current_velocity: float32

current_curvature: float32

secure_standstill: bool

encode_vehicle_position()

decode_vehicle_position()

MotionPlanning

trajectory_identitifer: uint32 

target_x: float32[]

target_y: float32[]

target_psi: float32[]

target_velocity: float32[]

target_curvature: float32[]

compute_trajectory()

UDPSocket

message_buffer: uint8[]

bind()

recvfrom()

sendto()

close()
MotionControl

steering_angle: float32 

acceleration: float32

emergency_braking: bool

longitudinal_control()

lateral_control()

VehicleData

current_velocity: float32

current_curvature: float32

secure_standstill: bool

get()

Figure 6: UML class diagram of the software modules.

2.4 System Testing

Once the system has been developed, we proceed to the testing phase. In this work, we
followed the X-in-the-Loop testing approach introduced by [19]. The test assessments are
defined in three steps:



• Model-in-the-Loop (MiL): The goal here is to run the system in a simulated AVP
environment to ensure maintaining the functions refactored from the AVP type 1 sys-
tem. For this purpose, we used the IPG CarMaker simulator, which has the advantage
of an accurate and realistic simulation of the vehicle’s dynamics characteristics. The
driving environment is simulated referring to the ASAM OpenDRIVE3 standard to en-
sure a reliable description of the driven roads. We integrate the vehicle control module
in the simulation. The motion planning modules are integrated in a second computer,
connected to the simulation computer via a local network. The perception data are
retrieved directly from the simulation. Since MiL tests are not running under realis-
tic communication conditions, the safety requirements are not considered during these
tests. Finally, we define the test driving scenarios as described in [2].

• Software-in-the-Loop (SiL): The described AVP simulation setup is run in a closed
loop. Hence, the software modules and the compatibility between the classes are tested.
After successful compliance of the software, we can ensure maintaining the same logic
of the prior AVP type 1 model.

• Hardware-in-the-Loop (HiL): The aim of these tests is to ensure the integration of
the software modules in the target hardware. We used the dSPACE LabBox here as
a test platform for both the vehicle and server. The LabBox also offers an interface
with the CarMaker simulator for the closed-loop simulation, which allows running the
simulation on a real-time system. The communication hardware is also integrated in
the testing platform, which helps to evaluate also the redundancy of the network.

2.5 System Validation

The last step in the V-model consists of the validation of the resulting system. For this
purpose, we implemented the AVP type 2 system on two different test vehicles4. The
first vehicle is TEASY 3, the experimental vehicle used to demonstrate the AVP Type
1 system, the baseline of this work. The second test vehicle is the autonomous shuttle
RAION, a testing platform used in the development of AD functions for urban areas
[20]. Both vehicles are equipped with the required vehicle hardware. We extended the
hardware setup with the communication interface. In addition, we defined a set of vehicle
parameters for each vehicle, to ensure calculating an dynamically feasible trajectory for
each vehicle by the server. A comparison of the trajectories generated by both AVP
systems for the same parking scenario showed a consistency between the driven paths.

3 Conclusion

In this work, we introduce a systematic approach for transferring an Automated Valet
Parking system from an automated vehicle to an intelligent infrastructure. Following the
V-model, we adapted the original system by applying a model refactoring. The resulting
system was tested and validated on different test vehicles, which reflects consistency and
modularity. This shows the importance of system engineering in the acceleration of the
development process without hindering the knowledge transfer.

3https://www.asam.net/standards/detail/opendrive/
4https://www.tu-braunschweig.de/iffzg/forschung/ausstattung/experimentalfahrzeuge



Acknowledgement

This work is funded by the German Federal Ministry of Education and Research (BMBF)
as a part of the research project Resiliente Kommunikationssysteme fuer sichere und
flexible Produktionssysteme (RePro)5.

References

[1] R. Matthaei and M. Maurer, Autonomous driving - a top-down approach. at-
Automatisierungstechnik. Vol. 63, no. 3, pp. 155–167, 2015.

[2] ISO/DIS 23374-1. Intelligent transport systems - Automated valet parking systems
(AVPS), Part 1: System framework, requirements for automated driving, and com-
munication interface. 2022.

[3] SAE International. Taxonomy and Definitions for Terms Related to Driving Automa-
tion Systems for On-Road Motor Vehicles. SAE Standard J3016 202104. 2021.

[4] H. Stoll, D. Grimm, M. Schindewolf, M. Brodatzki and E. Sax, Dynamic reconfigu-
ration of automotive architectures using a novel plug-and-play approach. 2021 IEEE
Intelligent Vehicles Symposium Workshops (IV Workshops). pp. 70-75, 2021.

[5] E. S. Hanawalt and W. B. Rouse, Car wars: Factors underlying the success or failure
of new car programs. Systems Engineering. Vol. 13, pp. 389-404, Wiley Online Library,
2010.

[6] P. Obergfell, S. Kugele, C. Segler, A. Knoll and E. Sax, Continuous software engi-
neering of innovative automotive functions: An industrial perspective. 2019 IEEE In-
ternational Conference On Software Architecture Companion (ICSA-C). pp. 127-128,
2019.

[7] B. Liu, H. Zhang and S. Zhu, An incremental V-model process for automotive de-
velopment. 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). pp.
225-232, 2016.

[8] ISO/DIS 26262-2. Road vehicles - Functional safety - Part 4: Product development:
system level. 2009.

[9] German Association of the Automotive Industry. Automated Valet Parking Systems
- Requirements for automated valet parking systems. 2023.

[10] A. Kossiakoff, W. N. Sweet, S. J. Seymour and S. M. Biemer, Systems engineering
principles and practice. Vol. 83. John Wiley & Sons, 2011.

[11] J. Bach, S. Otten and E. Sax, A taxonomy and systematic approach for automotive
system architectures-from functional chains to functional networks. International Con-
ference On Vehicle Technology And Intelligent Transport Systems. Vol. 2, pp. 90-101,
2017.

5https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/repro



[12] M. Kascha, Entwicklung einer Level-4-Funktion fur das autonome Fahren PhD The-
sis, TU Braunschweig. Shaker Verlag, 2025. ISBN: 978-3-8440-9916-4.

[13] M. Kascha and R. Henze, Requirement Analysis of Lidar Sensor Setups for Self-
Localization in Automated Valet Parking. 2022 22nd International Conference On
Control, Automation And Systems (ICCAS). pp. 1474-1480, 2022.

[14] M. Kascha and R. Henze, Modular Decision Making Framework for Level 4 Appli-
cations in Automated Driving. IEEE 29th International Conference on Mechatronics
and Machine Vision in Practice (M2VIP). pp. 1-6, 2023.

[15] M. Kascha, S. Gierke, M. Frede and R. Henze, Modular Survey and Real Implemen-
tation of Lateral Controllers for Automated Driving. 2023 IEEE 11th International
Conference on Systems and Control (ICSC). pp. 796-803, 2023.

[16] T. Mens and T. Tourwé, A survey of software refactoring. IEEE Transactions on
software engineering. Vol. 30, pp. 126-139, 2004.

[17] P. Obergfell, S. Kugele, and E. Sax, Model-based resource analysis and synthesis of
service-oriented automotive software architectures. 2019 ACM/IEEE 22nd Interna-
tional Conference On Model Driven Engineering Languages And Systems (MODELS).
pp. 128-138, 2019.

[18] MATLAB, version 9.6.0 (R2019a). The MathWorks Inc. Natick, Massachusetts, 2010.

[19] F. Reisgys, J. Plaum, A. Schwarzhaupt and E. Sax, Scenario-based x-in-the-loop
test for development of driving automation. 14. Workshop Fahrerassistenzsysteme und
automatisiertes Fahren. Uni-DAS eV, 2022.

[20] L. Everding, I. Aslam, C. Raulf, O. Aviv Yarom, J. Fritz, S. Jacobitz, T. Hegerhorst,
C. Pethe, T. Şahin, J. Iatropoulos, Jannes, T. Vietor, A. Rausch, X. Liu-Henke
and R. Henze, Dynamically Configurable Autonomous Vehicles for Urban Cargo
Transportation. Towards the New Normal in Mobility: Technische und betrieb-
swirtschaftliche Aspekte. pp. 851-869, 2023.


