
Event Detection in C-ITS: Classification, Use Cases,
and Reference Implementation

Lennart Reiher∗, Bastian Lampe†, Lukas Zanger‡,
Timo Woopen§, and Lutz Eckstein¶

Abstract: The transition from traditional hardware-centric vehicles to software-defined vehi-

cles is largely driven by a switch to modern architectural patterns of software, including service

orientation and microservices. Automated driving systems (ADS), and even more so, Coopera-

tive Intelligent Transport Systems (C-ITS), come with requirements for scalability, modularity,

and adaptability that cannot be met with conventional software architectures. The complex-

ity and dynamics of future mobility systems also suggest to employ ideas of the event-driven

architecture paradigm: distributed systems need to be able to detect and respond to events in

real-time and in an asynchronous manner. In this paper, we therefore stress the importance of

data-driven event detection in the context of ADS and C-ITS. First, we propose a classification

scheme for event-detection use cases. We then describe a diverse set of possible use cases and

apply the classification scheme to a selection of concrete, innovative examples. Last, we present

a modular event detection software framework that we publish as open-source software to foster

further research and development of complex C-ITS use cases, but also for robotics in general.

The framework is published at github.com/ika-rwth-aachen/event_detector.

Keywords: Cooperative Intelligent Transport Systems, Event Detection, Software Architec-

ture, Event-Driven Architecture, Use Cases

1 Introduction

The advancement of automated driving technology goes hand-in-hand with the trend to-
wards software-defined vehicles. Software for automated driving, however, does not stop
at the vehicle, but quickly encompasses diverse entities in a Cooperative Intelligent Trans-
port System (C-ITS) to power the automated and connected mobility of the future. The
shift towards increasingly complex and interconnected software also requires a shift in the
design of software architectures for these systems. From individual automated driving
systems to C-ITS, the underlying software architectures need to be scalable, modular,
and adaptable to the dynamic and complex interactions that define the future mobil-
ity system. Conventional automotive E/E architectures are function-oriented and lack

∗Lennart Reiher is doctoral researcher and Group Leader Connectivity at the Institute for Automotive
Engineering (ika) at RWTH Aachen University (e-mail: lennart.reiher@ika.rwth-aachen.de).
†Bastian Lampe is doctoral researcher and Group Leader Automation at ika.
‡Lukas Zanger is doctoral researcher at ika.
§Timo Woopen is doctoral researcher and Manager of the Research Area Vehicle Intelligence & Au-

tomated Driving at ika.
¶Lutz Eckstein is Professor and Director of ika.

https://github.com/ika-rwth-aachen/event_detector
mailto:lennart.reiher@ika.rwth-aachen.de


flexibility with respect to adaptation and extension [1]. Instead, modern architectural
patterns such as service orientation and microservices propose to only loosely couple iso-
lated components [1, 2].

The complex and dynamic interactions in future traffic also indicate an inherently
event-driven nature: if a vehicle is involved in a crash, it automatically records relevant
event data leading up to the incident [3]; if an automated vehicle detects emergency vehicle
sirens, it automatically reconfigures its trajectory planning to make way; if two connected
automated vehicles are approaching an intersection equipped with intelligent roadside in-
frastructure, the infrastructure automatically shares a fused collective environment model
with the vehicles [4].

These are just some examples that motivate the combination of service-oriented and
microservice architectures with the event-driven architecture (EDA) paradigm [5]. The
occurrence of specific events (e.g., vehicle crashes) is detectable in data (e.g., crash sen-
sors). The detection of an event then triggers a consequent action (e.g., record event
data). EDAs enable such real-time event detections and responses, allowing distributed
systems, in particular, to take adequate asynchronous actions without the need for con-
tinual polling or extensive state machines.

Such capabilities open up a wide range of new possibilities for improving the safety,
efficiency, and user satisfaction of traffic. A large part of the dynamic-ness of future C-ITS
will be reflected in the specific patterns in the data (or events), e.g., a number of vehicles
arriving at a particular intersection equipped with intelligent roadside infrastructure. The
complexity of such systems in general, but also the complexity of the events that should
be detectable in the data, therefore motivate to not treat use cases as the aforementioned
ones individually and in an isolated manner, but to think of them with a generic event
detection perspective in mind.

This work argues for the importance of data-driven event detection in the context of
ADS and C-ITS through the following contributions: (a) We propose an overarching clas-
sification scheme for event detection use cases in the context of ADS and C-ITS; (b) we
describe a diverse set of possible use cases and present concrete, innovative examples
systematically characterized by our classification scheme; and (c) we present a modular
event detection software framework and corresponding open-source reference implemen-
tation based on the Robot Operating System 2 (ROS 2) [6] to foster further research and
development.

2 Background

Service-oriented and microservice architectures for automotive applications have already
been proposed and partially implemented, both in academia and industry [1, 7, 8, 9, 10,
11]. So far, only few works of literature are concerned with event-driven architectures in
the context of automated driving [12, 13, 14, 15].

The notion of event-driven software architectures revolves around the detection of and
response to so-called events. An event is typically defined as a significant change in state.
There are two types of components in EDAs: event emitters detect an event’s occurrence
and emit an event notification (commonly also referred to as event); event consumers
receive these notifications and act in response. Notably, event emitters and consumers
are only loosely coupled: emitters do not need to know what consumers there are and



vice-versa. EDAs facilitate asynchronous, scalable, and real-time processing of events and
responses in distributed systems. [5]. The service-oriented and event-driven architectural
patterns can complement each other by triggering specific services in response to specific
events [16].

In the context of automated driving, Object and Event Detection and Response (OEDR)
is considered one fundamental component of the Dynamic Driving Task (DDT) as defined
by the SAE for the definition of its levels of driving automation [17]. ISO 21448 and
ISO 34501 define an event as an occurrence at a point in time [18] or, equivalently, a
relevant state change of an entity within a scenario [19], e.g., a traffic light turning green
at a given time. For the purpose of crash reconstruction, EU legislation requires the in-
stallation of event data recorders in all new passenger cars and light commercial vehicles
from July 2024 and in all buses, coaches and heavy-duty vehicles from January 2029 [3].

Building on top of these definitions, in the context of this paper, we define an event as
a developer-defined change in state of a C-ITS (including individual entities and the envi-
ronment) that is associated with the occurence of certain patterns in the data exchanged in
the C-ITS. Event detection then is defined as the process of analyzing said data in order
to identify the patterns signaling the event. An action is defined as the developer-defined
direct consequence triggered by the detection of an event.

With respect to the use cases that are enabled by future C-ITS, several international
standards institutes, the cellular community, and industry- and academia-spanning con-
sortia have already proposed a multitude of concrete use cases [20, 21, 22].

3 Event Detection Use Cases

In light of the many C-ITS use cases already proposed in literature (cf. Section 2), our
goal in developing a classification methodology is to take a step back and create a detailed
structure for C-ITS event detection use cases. The data-driven event detection view aims
to provide a common ground for deriving, conceptualizing, structuring, and implementing
these use cases in future event-driven architectures.

3.1 Classification Scheme

To develop a classification scheme for event detection use cases, we first identify a set of
classifying dimensions. We strive for these dimensions to be as mutually exclusive and
collectively exhaustive as possible, without making the scheme overly complex. Next, for
each classifying dimension, we identify a set of distinct characteristic values that can be
used to classify use cases. The incidence of a use case, e.g., may be characterized as
frequent, common, rare, or unexpected. The classification of a use case along the proposed
scheme helps to conceptualize and implement use cases, or to derive innovative new ones.

For the classification scheme, we identify 13 diverse dimensions and 39 characteristic
values along these dimensions. An overview of the classification dimensions and char-
acteristic values is given in Fig. 1. A full definition of the entire classification scheme,
including a definition of all classifying dimensions and characteristic values, is given in Ta-
ble 1. Note that not all combinations of characteristic values along different dimensions
are meaningful. Also note that some use cases may fall onto multiple characteristic values
along a single dimension.



Hier eintragen …

x

Hier eintragen …

one two multiple

Type of Participants

vehicle VRU road infrastructure remote infrastructure

Data Source Entity

event source entity external

C-​ITS Event Detection Use Case

Purpose

Definition of Event

Definition of Action

Classification

Event Detection Entity

event source entity data source entity

Affected Entity

acting entity external

participant environment beyond environment immediate short-​term long-​term frequent common rare data collection reconfiguration deployment notificationrule-​based learning-​based

Time Sensitivity

immediate short-​term long-​term

Overarching Purpose

Safety Efficiency User Satisfaction external

Acting Entity

event detection entity external

other

Scope of Impact Observation Period Incidence Type of ActionDetection Algorithm

Classification

Number of Participants

Figure 1: Classifying dimensions and characteristic values for event detection use cases (best viewed digitally)



Dimension Definition Characteristic Value Definition of Characteristic Value

Overarching
Purpose

high-level purpose/goal
of the use case

safety improve safety of road transport
efficiency improve efficiency

user satisfaction improve user satisfaction

Type of
Participants

type of participants; par-
ticipants are entities di-
rectly involved in the
data processing chain of
the use case

vehicle cars and other motorized vehicles
VRU vulnerable road users such as pedestrians,

bicyclists, or motorcyclists
road infrastructure road/roadside infrastructure such as traffic

signs or intelligent roadside ITS stations
remote infrastructure remote infrastructure such as control cen-

ters or cloud systems

Number of
Participants

number of participants
one single participant
two two participants

multiple more than two participants

Data
Source
Entity

entity that initially pro-
duces data in which
events are detected

event source entity data is initially produced at the same en-
tity whose state changes give rise to the de-
tected event

external data is initially produced at an entity other
than the event source

Event
Detection
Entity

entity that detects
events based on iden-
tifying patterns in the
available data

event source entity events are detected at event source entity
data source entity events are detected at data source entity

external events are detected at an entity other than
the event source or data source entity

Acting
Entity

entity that executes ac-
tions directly resulting
from event detection

event detection entity actions are executed at event detection ent.
external actions are executed at an entity other than

the event detection entity

Affected
Entity

entity that is directly af-
fected by consequences
of the action

acting entity direct consequences on the acting entity
external direct consequences on an entity other than

the acting entity

Scope of
Impact

scope of the conse-
quences resulting from
the action

participant consequences on participants
environment consequences on participants and their en-

vironment
beyond environment consequences on entities beyond partici-

pants and their environment, e.g., a fleet
of vehicles

Observation
Period

duration over which data
is analyzed to detect an
event

immediate event immediately follows the occurrence of
a specific data sample

short-term data over a couple of seconds up to minutes
is required to detect an event

long-term an event is detected based on the analysis
of hours of data or even longer

Time
Sensitivity

how time-sensitive the
action is

immediate the action leads to immediate consequences
short-term the action leads to consequences over the

next couple of seconds up to minutes
long-term the action leads to consequences after hours

or even longer

Incidence
how common events and
resulting actions are

frequent events and actions occur frequently, i.e.,
they are part of standard operation

common events and actions are not frequent, but
commonly expected

rare events and actions are rare, i.e., the occur-
rence is special

unexpected events and actions are expected to never
happen, but deemed possible in theory

Detection
Algorithm

type of the algorithm for
detecting events

rule-based rules and heuristics
learning-based data-driven and learning-based

Type of
Action

type of the action

data collection data is recorded
reconfiguration existing software component is reconfigured

deployment new software components are launched
notification a notification is sent

other any other type of action

Table 1: Classifying dimensions and characteristic values for event detection use cases



3.2 Presentation of Use Cases

We now present a selection of innovative use cases from the field of ADS and C-ITS. We
view an event detection use case as a set of the following: (a) a description of its concrete
purpose, (b) a definition of the concrete event, (c) a definition of the concrete action, and
(d) a classification of the use case along the set of classifying dimensions.

Keeping the extensive classification scheme in mind, concrete event detection use cases
are practically endless. We present a selection of diverse example use cases, each serving
as a representative instance of one of the higher-level use case clusters. Our goal is to
provide inspiration for the development of innovative new use cases that, ideally, can be
researched and prototyped using our proposed event detection framework.

In the following, we present one concrete example use case for six diverse use case
cluster.

3.2.1 Preventive, Predictive, and Condition-Based Maintenance

This cluster describes use cases that aim at identifying maintenance needs [23] of hardware
components before they fail. Preventive, predictive, and condition-cased maintenance
helps to prevent failures that could cause harm, to reduce downtime, and to increase the
lifetime of hardware components. Use cases rely on monitoring of component state and
behavior, and on the gathering and analysis of corresponding historical data.

Example: Threshold-based condition monitoring of battery health
Purpose: Enable fleet operators to conduct adequate maintenance measures before a
battery failure occurs.
Event: Battery-internal diagnostics report that the battery’s state of health is below a
certain threshold.
Action: Automatically generate a report with relevant data and notify the fleet operator.
Classification: See Table 2.

Dimension Char. Value Dimension Char. Value

Overarching Purpose safety, efficiency Scope of Impact participant
Type of Participants vehicle Observation Period short-term

Number of Participants one Time Sensitivity long-term
Data Source Entity event source entity Incidence rare

Event Detection Entity event source entity Detection Algorithm rule-based
Acting Entity external Type of Action notification

Affected Entity external

Table 2: Classification of use case Threshold-based condition monitoring of battery health

Another concrete example use case in this cluster is: Predictive maintenance of a
vehicle’s braking system.

3.2.2 Orchestration of Safety Measures

This cluster describes use cases that aim at detecting hardware or software faults and
failures (cf. ISO 26262 [24]) as well as triggering conditions for functional insufficiencies
and corresponding hazardous behavior (cf. ISO 21448 [25]). Upon detection, appropriate



safety measures are triggered to orchestrate system reconfigurations that prevent harm,
potentially maintaining system functionality or transitioning to a safe state.

Example: Reconfiguration of perception system on camera fault
Purpose: Prevent potential harm caused by invalid data produced by a camera sensor
affected by a hardware fault.
Event: The camera sensor produces invalid data, e.g., all pixel values are zero for a certain
period of time.
Action: The system orchestrator reconfigures the system architecture by removing the
camera from the data processing chain. The orchestrator may determine additional nec-
essary actions, e.g., to reduce the maximum speed of the vehicle or to transition the
vehicle to a safe state.
Classification: See Table 3.

Dimension Char. Value Dimension Char. Value

Overarching Purpose safety Scope of Impact participant
Type of Participants vehicle Observation Period short-term

Number of Participants one Time Sensitivity immediate
Data Source Entity event source entity Incidence rare

Event Detection Entity event source entity Detection Algorithm rule-based
Acting Entity event detection entity Type of Action reconfiguration

Affected Entity acting entity

Table 3: Classification of use case Reconfiguration of perception system on camera fault

Another concrete example use case in this cluster is: Transitioning to safe state in
case of uncontrollable functional insufficiency.

3.2.3 ADAS/AD System Reconfiguration under Normal Operation

This cluster describes use cases that aim at an automated reconfiguration of advanced
driver assistance and/or automated driving systems (ADAS/AD) in automated vehicles
in response to specific events. This cluster focuses on event-action pairs that are part of
the normal operation of the system, i.e., they are not triggered by faults or failures. Such
use cases are largely ego-centric, i.e., the main participant is a single automated vehicle
that is analyzing its own state and its environment.

Example: Level 3 request to intervene [17]
Purpose: Issue a request to intervene to the driver of a Level 3 automated vehicle if the
vehicle is about to leave the operational design domain (ODD) of the automation system.
Event: A Level 3 automated vehicle detects is about to leave the ODD of the automation
system, e.g., due to taking a highway exit coming up in the next kilometers.
Action: Issue a request to intervene to the driver of the vehicle.
Classification: See Table 4.

Another concrete example use case in this cluster is: Situation- and weather-aware
perception.



Dimension Char. Value Dimension Char. Value

Overarching Purpose safety Scope of Impact participant
Type of Participants vehicle Observation Period immediate

Number of Participants one Time Sensitivity short-term
Data Source Entity event source entity Incidence frequent

Event Detection Entity data source entity Detection Algorithm rule-based
Acting Entity event detection entity Type of Action notification

Affected Entity acting entity

Table 4: Classification of use case Level 3 request to intervene

3.2.4 C-ITS Reconfiguration

This cluster describes use cases that aim at an automated reconfiguration of a C-ITS
which includes numerous vehicles, infrastructure, and other connected entities that react
to specific events.

Example: Emergency vehicle prioritization
Purpose: Minimize travel time for emergency vehicles in emergency operations.
Event: A C-ITS control center is informed about a new emergency operation, including
the route of an emergency vehicle.
Action: Vehicles’ navigation systems are informed by the control center to avoid specific
roads.
Classification: See Table 5.

Dimension Char. Value Dimension Char. Value

Overarching Purpose safety, efficiency Scope of Impact
participant,
environment

Type of Participants vehicle, remote infrastructure Observation Period short-term
Number of Participants multiple Time Sensitivity short-term

Data Source Entity event source entity Incidence common
Event Detection Entity external Detection Algorithm rule-based

Acting Entity event detection entity Type of Action reconfiguration
Affected Entity external

Table 5: Classification of use case Emergency vehicle prioritization

Other concrete example use cases in this cluster are: Local on-demand sensor fusion
through roadside infrastructure and Latency-aware edge offloading of ADAS/AD applica-
tions.

3.2.5 Shadow Mode Testing

This cluster describes use cases that aim at testing new applications in a shadow mode,
i.e., running an open-loop alternative of an existing software component in parallel to test
it under real-world conditions.



Example: Discrepancy mining for a perception system in shadow mode
Purpose: Run a perception system in shadow mode to enable an assessment of perfor-
mance differences between the existing version and a new version.
Event: Relevant discrepancies between the outputs of the existing and shadow mode per-
ception systems occur, e.g., an object is only present in the environment model produced
by the shadow mode system.
Action: Record inputs and outputs of both perception systems for offline analysis and
evaluation.
Classification: See Table 6.

Dimension Char. Value Dimension Char. Value

Overarching Purpose safety Scope of Impact
participant,
beyond environment

Type of Participants vehicle Observation Period short-term
Number of Participants one Time Sensitivity short-term

Data Source Entity event source entity Incidence common

Event Detection Entity data source entity Detection Algorithm
rule-based,
learning-based

Acting Entity event detection entity Type of Action data collection
Affected Entity acting entity

Table 6: Classification of use case Discrepancy mining for a perception system in shadow mode

3.2.6 Collective Learning

This cluster describes use cases that aim at a long-term optimization of selected perfor-
mance indicators of data-driven software components by leveraging data from a fleet of
connected vehicles, infrastructure, etc. The concept is covered in more detail in [26].

Example: Multi-perspective label generation for collectively learnt object de-
tection
Purpose: Generate autolabeled training samples from collectively gathered fleet data to
iteratively improve object detection models based on supervised learning.
Event: Two (or more) sensor-equipped vehicles observe the same scene from different
perspectives and their object detection models produce conflicting environment models.
Action: Record sensor data and conflicting environment models for offline autolabeling.
Classification: See Table 7.

Another concrete example use case in this cluster is: Multi-timestep label genera-
tion [26].

4 Event Detection Software Framework

The previous section illustrates how C-ITS use cases can be thought of as event-action
pairs. Motivated by the recurrence of this event-driven theme in the presented use cases,
we propose a generic, modular, and data-driven event detection framework for C-ITS. A
unified event detection framework can be the backbone for a wide range of C-ITS appli-
cations, as it allows for the reuse of components and the development of new applications



Dimension Char. Value Dimension Char. Value

Overarching Purpose safety Scope of Impact
participant,
beyond environment

Type of Participants vehicle Observation Period short-term
Number of Participants multiple Time Sensitivity short-term

Data Source Entity event source entity Incidence common

Event Detection Entity data source entity Detection Algorithm
rule-based,
learning-based

Acting Entity event detection entity Type of Action data collection
Affected Entity acting entity

Table 7: Classification of use case Multi-perspective label generation for collectively learnt object
detection

by combining existing components. Such a system further integrates well with the idea
of automated and connected systems that can access and process any data at any time,
facilitating the development of new applications and services.

As part of this work, we open-source a ROS 2-based implementation of our proposed
generic event detection framework called event detector1 to foster research and devel-
opment in the field of automated and connected driving.

4.1 Architecture of the Event Detector

The main purpose of the event detector is to act upon developer-defined events that are
associated with patterns in data. Irrespective of any particular use case, the event detector
fulfils three main tasks: (a) it buffers incoming data, (b) it periodically analyzes available
data in order to detect events, and (c) it triggers actions in response to detected events.

These three main tasks are handled by three main components of the event detector,
respectively: (a) the data buffer, (b) the data analysis for event detection, and (c) an
action plugin system for triggering different types of actions. The high-level architecture
of the event detector is shown in Fig. 2, complemented by a more detailed description of
all components in the following subsections.

A key design element of the event detector is its modularity, positioning it as a generic
event detection framework that can be easily extended and adapted to new use cases.
This is achieved through the use of a plugin system for the data analysis and action
components. Different so-called action plugins exist for different types of actions, e.g.,
recording data upon event detection. New action plugins can easily be integrated with
the core event detector framework. Within these action plugins, the data analysis for
event detection is implemented in fully-customizable developer-defined so-called analysis
rules.

The core of the event detector framework is implemented as a high-performance C++
ROS 2 component node. It covers generic data buffering and implements a generic frame-
work for periodic data analysis. Action plugins are dynamically loaded at runtime using
ROS 2’s pluginlib library [27].

The implementation based on the the open and widely used ROS 2 ecosystem makes
the event detector a versatile reference for the research on development of complex event-

1github.com/ika-rwth-aachen/event_detector

https://github.com/ika-rwth-aachen/event_detector


Event Detector

Buffer

Analysis Analysis Rule

ROS Bag Recording

Recording Rule

Custom Rule …

Database Recording

Recording Trigger

Kubernetes Operator

Core Event Detector

Event Detector Action Plugin

Figure 2: Architecture of the event detector framework: the core event detector manages the data
buffer and periodically executes data analysis based on an abstract analysis rule interface; the
core event detector is complemented by action plugins; action plugins implement a specific action
functionality such as recording to a ROS bag file; specific data analysis for event detection and
a specific action consequence in the end are implemented in developer-defined custom analysis
rules.

and data-driven C-ITS applications. Outside of the context of automated and connected
driving, the event detector framework also enabled similar event-driven use cases in other
domains, such as robotics.

4.1.1 Data Buffering

The detection of events in data, in general, is not restricted to a single point of time, but
often requires access to a history of data. For this reason, all incoming data is buffered
for a configurable amount of time. As a ROS 2-based framework, data is received and
buffered in the form of ROS messages. The buffer and the event detector in general are
agnostic to specific data types in the sense that the framework can easily be extended to
cover arbitrary ROS message types. Relevant data to be buffered is specified on a ROS
topic basis with customizable buffer lengths per topic. Buffered topics are assigned to
so-called clients, underlining the possible deployment of the event detector in a complex
C-ITS environment incorporating data from multiple sources, e.g., vehicles, connected
VRUs, and roadside infrastructure.

Given the extent of data being produced in automated driving systems, it is infeasible
and undesirable to store all data indefinitely. Therefore, the buffer is realized as a ring
buffer covering a configurable duration of the immediate past. New data is continually
added to the buffer, overwriting the oldest data once the buffer is full.

The data buffering functionality is completely implemented in the core event detector
framework. An excerpt of a possible configuration of the data buffer is part of the example
configuration file shown in Listing 1.

4.1.2 Data Analysis for Event Detection

Given its name, a core functionality of the event detector is to detect events identified by
patterns in the buffered data. For this purpose, the buffered data is periodically analyzed
by the data analysis component. Any particular analysis is use case-specific, naturally,
and is developer-defined in the form of so-called analysis rules. This customizability is
achieved through an abstract base class for analysis rules that developers can extend to
implement their specific analysis logic, cf. Fig. 2. The abstract base class provides a



Listing 1: Condensed configuration file of the event detector

1 event detector:

2 ros parameters:

3 # [...]

4 buffer:

5 default time: 10.0

6 analysis:

7 default period: 5.0

8 clients:

9 - ego

10 client params:

11 ego:

12 client data list:

13 - geometry_msgs__PoseStamped

14 - sensor_msgs__Image

15 data:

16 geometry msgs PoseStamped:

17 topics:

18 - /ego/pose

19 sensor msgs Image:

20 topics:

21 - /ego/camera/image

22 rules:

23 - event_detector_db_recording_plugin::RecordAllRule

24 rule params:

25 event detector db recording plugin::RecordAllRule:

26 enabled: true

27 geometry msgs PoseStamped: true

28 sensor msgs Image: true

29 # [...]

30

common interface for the event detector to interact with the analysis rules and vice-versa.
A developer-defined analysis rule can freely request data from the buffer, analyze it, and
act upon the detection of a specific event.

The detection of any specific event is closely tied to the action that should be triggered
upon its detection. Together, the event-action pair describes a use case to fulfil a specific
purpose, cf. Section 3. For this reason, any developer-defined custom analysis rule is
associated with a specific action plugin, as described in Section 4.2.

A single instance of the event detector can be configured to run multiple analysis rules
in parallel.

An excerpt of a possible configuration of the data analysis is part of the example
configuration file shown in Listing 1.

4.2 Action Plugins

As described above, the core event detector is complemented by a set of action plugins.
Action plugins implement the specific actions that should be triggered upon the detection
of a specific event. As part of the event detector framework, we publish an initial set
of action plugins that cover common use cases in the context of C-ITS. Nevertheless,



we highlight that the event detector is designed to be easily extensible with new action
plugins or new developer-defined analysis rules in existing action plugins to cover new use
cases.

Specific analysis rules are associated with specific action plugins. For most conceivable
action plugins, it makes sense to consolidate the core action logic in yet another abstract
base class that developers can extend to implement their specific analysis logic and action
configuration, cf. Fig. 2.

An excerpt of a possible configuration of an action plugin (for database recording in
this case, cf. Section 4.2.2) is part of the example configuration file shown in Listing 1.

In the following, four specific action plugins are presented. Three of them are part of
the initial set of action plugins that we publish as part of the event detector framework.
Concrete examples of use cases enabled by the event detector and its action plugins are
published in a dedicated repository2.

4.2.1 ROS Bag Recording

The event detector bag recording3 action plugin allows to write data from the buffer
to a ROS bag file upon the detection of a specific event. An exemplary use case is the
event data recorder, i.e., the recording of relevant data upon the detection of a crash
incident. The action plugin already provides two built-in concrete analysis rules: one for
recording all data on specified topics, another one for recording data on specified topics
only if a specified quantity surpasses a specified threshold.

In principle, this action plugin is similar to the snapshot functionality of rosbag2 [28].
The event detector, however, offers automated snapshotting based on developer-defined
events and has a time-based buffer instead of restricting the number of buffered messages.

4.2.2 Database Recording

The event detector db recording4 action plugin allows to write data from the buffer
to a database upon the detection of a specific event. Use cases are similar to the ROS bag
recording action plugin (cf. Section 4.2.1), but with the advantage of a more scalable and
established storage solution. MongoDB is selected as the database backend, allowing to
store ROS messages in their original JSON-like format. The action plugin already provides
two built-in concrete analysis rules: one for recording all data on specified topics, another
one for recording data on specified topics only if a specified quantity surpasses a specified
threshold.

4.2.3 Recording Trigger

The event detector recording trigger5 action plugin allows to trigger the start and
stop of a data recording upon the detection of a specific event. It differs from the ROS bag
recording and database recording action plugins (cf. Sections 4.2.1, 4.2.2) in that it does
not record data itself, but triggers the start and stop of a recording in a separate recording

2github.com/ika-rwth-aachen/event_detector_examples
3github.com/ika-rwth-aachen/event_detector_bag_recording
4github.com/ika-rwth-aachen/event_detector_db_recording
5github.com/ika-rwth-aachen/event_detector_recording_trigger

https://github.com/ika-rwth-aachen/event_detector_examples
https://github.com/ika-rwth-aachen/event_detector_bag_recording
https://github.com/ika-rwth-aachen/event_detector_db_recording
https://github.com/ika-rwth-aachen/event_detector_recording_trigger


system. This separate recording system may, e.g., be a remote ROS bag recording action
plugin.

4.2.4 Kubernetes Operator

The event detector operator6 action plugin allows to request the deployment or recon-
figuration of applications in a Kubernetes cluster upon the detection of a specific event.
This action plugin opens up a practically endless range of complex use cases in the context
of C-ITS. Kubernetes is well suited as a research platform for the development of com-
plex and highly distributed C-ITS applications, requiring coordination and orchestration
of software modules across multiple connected entities. An exemplary use case is the dy-
namic deployment of an application for the fusion of multiple environment models on an
intelligent roadside infrastructure station, when two connected vehicles are approaching
an intersection equipped with such infrastructure.

This action plugin is complemented by a so-called application manager component.
The application manager is responsible for the actual deployment and reconfiguration of
applications in the Kubernetes cluster via the Kubernetes control plane. It receives a
task description from an event detector with operator action plugin and translates it into
specific Kubernetes workload definitions.

4.3 Related Work

An orchestration framework based on the event detector has already been presented in
another work of the authors [10]. The proposed RobotKube approach aims at orchestrating
containerized microservices for large-scale cooperative multi-robot cyber-physical systems
based on Kubernetes. As such, the operator action plugin of the event detector plays a
central role in the RobotKube architecture. Multiple event detectors for both operator
and recording applications are combined in a reference use case implementation for the
use case of collective learning through multi-perspective label generation, cf. Section 3.2.6.

5 Conclusion

The work at hand identifies the importance of event-driven software architectures as an
enabler for complex ADS and C-ITS applications. By describing multiple diverse use cases
grounded in event detection and subsequent action, we illustrate the omnipresent need for
data-driven event detection. The proposed classification scheme for event detection use
cases provides a structured framework for thinking about a broad range of use cases from
a common perspective. Especially for application in the research and prototyping phase,
the common event detection perspective motivates the existence of a flexible software
framework for generic event detection use cases in the context of automated and con-
nected driving. The generic and modular event detector software framework proposed
in this work fills this gap and, as open source software, also allows other researchers and
developers to implement and test their own event-driven use cases.

6not yet published



Acknowledgements

This research is accomplished within the research projects 6GEM (FKZ 16KISK036K),
autotech.agil (FKZ 1IS22088A), and UNICARagil (FKZ 16EMO0284K). We acknowl-
edge the financial support by the Federal Ministry of Education and Research of Ger-
many (BMBF).

References

[1] T. Woopen, et al., UNICARagil - Disruptive Modular Architectures for Agile, Auto-
mated Vehicle Concepts 27th Aachen Colloquium Automobile and Engine Technol-
ogy, 2018.

[2] C. Mackenzie, et al., Reference Model for Service Oriented Architecture 1.0 OASIS,
2006.

[3] European Union, Regulation (EU) 2019/2144 of the European Parliament and of the
Council of 27 November 2019 on type-approval requirements for motor vehicles and
their trailers, and systems, components and separate technical units intended for such
vehicles, as regards their general safety and the protection of vehicle occupants and
vulnerable road users 2019.

[4] T. Woopen, B. Lampe, R. van Kempen, L. Eckstein, Architecture of a Collective Mem-
ory in UNICARagil 28th Aachen Colloquium Automobile and Engine Technology,
2019.

[5] M. Chandy, Event-driven Applications: Costs, Benefits and Design Approaches Cal-
ifornia Institute of Technology, 2006.

[6] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W. Woodall, Robot Operating System
2: Design, Architecture, and Uses in the Wild Science Robotics, Vol. 7, 2022.

[7] M. Wagner, D. Zoebel, A. Meroth, An adaptive Software and Systems Architecture
for Driver Assistance Systems based on service orientation International Journal of
Machine Learning and Computing, 2011.

[8] S. Furst, M. Bechter, AUTOSAR for Connected and Autonomous Vehicles: The AU-
TOSAR Adaptive Platform IEEE/IFIP International Conference on Dependable
Systems and Networks Workshop, 2016.

[9] R. van Kempen, et al., AUTOtech.agil: Architecture and Technologies for Orchestrat-
ing Automotive Agility 32nd Aachen Colloquium Sustainable Mobility, 2023.

[10] B. Lampe, L. Reiher, L. Zanger, T. Woopen, R. van Kempen, L. Eckstein, RobotKube:
Orchestrating Large-Scale Cooperative Multi-Robot Systems with Kubernetes and ROS
IEEE 26th International Conference on Intelligent Transportation Systems (ITSC),
2023.

[11] Scalable Open Architecture for Embedded Edge (SOAFEE) www.soafee.io.

https://www.soafee.io


[12] J. Dunkel, A. Fernandez, R. Ortiz, S. Ossowski, Event-Driven Architecture for Deci-
sion Support in Traffic Management Systems IEEE 11th International Conference
on Intelligent Transportation Systems (ITSC), 2008.

[13] P. Schneider, Event Detection and Diagnosis for Intelligent Transport Systems Doc-
toral Consortium, Challenge, Industry Track, Tutorials and Posters @ RuleML+RR
2017 hosted by International Joint Conference on Rules and Reasoning, 2017.

[14] E. Eryilmaz, F. Trollmann, S. Albayrak, An Architecture for Dynamic Context Recog-
nition in an Autonomous Driving Testing Environment IEEE 11th Conference on
Service-Oriented Computing and Applications (SOCA), 2018.

[15] S. Lee, S. Lee, J. Noh, J. Kim, H. Jeong, Special Traffic Event Detection: Framework,
Dataset Generation, and Deep Neural Network Perspectives Sensors, 2023.

[16] P. Krill, Make way for SOA 2.0 www.infoworld.com/article/2157676/

make-way-for-soa-2-0.html, 2006.

[17] SAE, Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles J3016 202104, 2021.

[18] International Standards Organization, ISO 21448:2022 Road vehicles - Safety of the
intended functionality 2022.

[19] International Standards Organization, ISO 34501:2022 Road vehicles - Test scenarios
for automated driving systems - Vocabulary 2022.

[20] F. Haidar, A. Kaiser, B. Lonc, P. Urien, R. Denis, C-ITS Use Cases: Study, Extension
and Classification Methodology IEEE 87th Vehicular Technology Conference (VTC
Spring), 2018.

[21] CAR2CAR, Use Cases 2023.

[22] C-ROADS Platform, C-ITS Roadmap 2024.

[23] P. Gackowiec, General Overview of Maintenance Strategies – Concepts and Ap-
proaches Multidisciplinary Aspects of Production Engineering, Vol. 2, 2019.

[24] ISO - International Organization for Standardization, ISO 26262:2018 Road vehicles
– Functional safety International Organization for Standardization, 2018. Available:
https://www.iso.org/standard/68383.html.

[25] ISO - International Organization for Standardization, ISO 21448:2022 Road vehicles
– Safety of the intended functionality International Organization for Standardization,
2022. Available: https://www.iso.org/standard/77490.html.

[26] B. Lampe, L. Reiher, T. Woopen, L. Eckstein, Cloud Intelligence and Collective
Learning for Automated and Connected Driving ATZelectronis Worldwide, 2023.

[27] pluginlib https://github.com/ros/pluginlib.

[28] rosbag2 https://github.com/ros2/rosbag2.

https://www.infoworld.com/article/2157676/make-way-for-soa-2-0.html
https://www.infoworld.com/article/2157676/make-way-for-soa-2-0.html
https://www.iso.org/standard/68383.html
https://www.iso.org/standard/77490.html
https://https://github.com/ros/pluginlib
https://https://github.com/ros2/rosbag2

	Introduction
	Background
	Event Detection Use Cases
	Classification Scheme
	Presentation of Use Cases
	Preventive, Predictive, and Condition-Based Maintenance
	Orchestration of Safety Measures
	ADAS/AD System Reconfiguration under Normal Operation
	C-ITS Reconfiguration
	Shadow Mode Testing
	Collective Learning


	Event Detection Software Framework
	Architecture of the Event Detector
	Data Buffering
	Data Analysis for Event Detection

	Action Plugins
	ROS Bag Recording
	Database Recording
	Recording Trigger
	Kubernetes Operator

	Related Work

	Conclusion

