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Abstract: In this paper, we enhance the BEVFormer for 3D object detection by using a
new multiscale cross-attention approach. We show that our proposed architecture provides an
improved performance and requires less computation. We introduce a layer-wise upscaling of
the BEV grid features and design them to align with the image features of matching spatial
resolution. Moreover, we reduce the number of parameters of the initial BEV grid to prevent
overfitting. The proposed enhancements are vital for making automated driving systems more
efficient and reliable.
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1 Introduction

3D visual perception is crucial for automated driving systems. To tackle multi-camera 3D
object detection, especially methods with feature representation in bird’s-eye view (BEV)
have recently attracted considerable research interest. Here, the BEV feature space can
be obtained by camera-to-BEV view transformations [6] or spatiotemporal transformers
[10]. In this paper, we focus on the latter BEVFormer architecture, which uses spatial
cross-attention to encode image features into a BEV grid.

In practical applications, a fast deployment is important, so we have a closer look at the
computationally costly components of the BEVFormer architecture, which are the image
backbone and the BEV encoder. Note that the computational cost of the image backbone
is mainly influenced by the input image size and the backbone dimension, whereas the
computational cost of the BEV encoder is mainly influenced by the BEV grid size, the
number of BEV grid layers and the number of used image feature maps.

In this paper, we propose to reduce the architecture overhead of the BEV encoder
with the following contributions:

e We propose an architecture modification of the BEV encoder using the multiscale
cross-attention principle, as presented in Figure 1. We show that the proposed
architecture requires less computations compared to the original BEV encoder while
maintaining a similar performance. The modifications include a layer-wise upscaling
of the BEV grid features and designing the BEV grid features to attend to image
features with the matching spatial resolution. In addition, we present detailed
ablation studies to justify the proposed design choices.
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Figure 1: Multi-camera 3D object detection using a modified BEVFormer architecture
with multiscale cross-attention.

e We reduce the number of learnable BEV queries to one. This is deemed to avoid
that the initial BEV queries learn a position label statistic. We show that this
improves the performance for our proposed architecture.

The remainder of the paper is structured as follows. The related work on multi-camera
3D object detection with BEV features is described in Section 2. In Section 3, the overall
network and the proposed BEV encoder is presented. Subsequently, the results and the
ablation studies are presented in sections 4 and 5, respectively. Lastly, the conclusion is
drawn in Section 6.

2 Related Work

Recently, research on camera-based 3D perception with machine learning focused on ap-
proaches utilizing a birds-eye-view (BEV) feature representation. These networks usually
implement a BEV encoder, which transforms the image features from the perspective view
into a top-down BEV representation. Since a correct transformation requires pixel-wise
depth information, which is not provided by RGB cameras, different methods have been
developed. The methods can be distinguished into two main categories. The first cat-
egory follows the Lift-Splat-Shoot paradigm (LSS) [11], which explicitly lifts the image
features into 3D space by implementing a neural network for pixel-wise depth estimation.
Examples for this category are BEVDet [6], which improves the LSS with augmenta-
tion strategies and modified non-maxima suppression, and BEVDepth [8], which adds
a LiDAR supervision to the depth estimation during training. Similar to BEVDepth,
BEVStereo [9] implements stereo depth estimation to improve the view transform.

In the second category, transformer architectures are utilized to encode image features
into the BEV grid. Each BEV feature is obtained by sampling image features using the
attention mechanism [12]. The developed methods mostly differ by the key query com-
binations. One example is the BEVFormer [10] architecture. It introduces grid-shaped



learnable queries, which only attend to their corresponding image regions by implementing
deformable attention [15]. In subsequent work, BEVFormerV2 [13] further adds a per-
spective 3D head as an additional task, to encourage the image backbone to learn more
3D relevant features. Another network of this category is PolarFormer [7], which uses
a BEV grid in polar coordinates and additional modifications. To tackle unconstrained
object scale variation, they further introduce multiscale polar representations, which are
computed in parallel and interact through an additional cross-attention block.

Most BEV-based detection networks are computationally intensive, and only a few
works have focused on an optimization for a fast deployment. MatrixVT [14] modifies
LSS by replacing the computationally intensive view transformation with efficient matrix
operations in addition to a compression of image features to reduce memory footprint.
Likewise, in [5], a deploy-friendly implementation of BEVDet is provided, which uses an
efficient preprocessing of computationally expensive operations.

3 Proposed Architecture

Figure 1 shows the overall architecture, which is based on BEVFormer, extended by the
proposed multiscale cross-attention approach. For structural simplicity, only the temporal
fusion module is taken from the BEVFormerV2 architecture, so that overall comparability
is ensured. Image features are extracted from multi-view images by an image backbone
and fed into a feature pyramid network (FPN) to obtain multiscale image features of
scales I;, I5, and I3. These are encoded by the BEV encoder into a unified BEV grid
using multiscale cross-attention. To further accomplish temporal scene understanding,
the BEV grid features of the last N time steps are stored in a memory bank. Together
with the current features, they are fused by concatenation and subsequent convolutions
[13]. Similar to BEVFormer, a DETR detection head [2] is used to decode the BEV grid
features into 3D detections.

The core of this work is the improved BEV encoder, as shown in the center column
of Figure 1. Similar to BEVFormer, the image features are encoded to a BEV grid via
cross-attention. To this end, learnable BEV queries are initialized and attend to the
multiscale image features in three consecutive layers. Each layer consists of a cross-
attention block, which contains self-attention, spatial cross-attention, and a feed forward
network, respectively, with skip connections between every module. The self-attention and
spatial cross-attention models are implemented as deformable attention [10]. To reduce
the number of attention operations while still maintaining the final size of the BEV grid,
an upsampling of the intermediate BEV grid between each layer is introduced.

In the following the three key components of this work are described.

3.1 Multiscale Cross-Attention

The number of computations is heavily dependent on the number of query-key pairs in
the attention blocks. Due to the deployment of the deformable attention method, the
computational complexity is reduced to a linear dependency on the number of queries.
Despite this reduction, the complexity still scales quadratically with the BEV query grid
dimensions. In this work a sequential upscaling of the BEV grid is introduced, to further
reduce the computational complexity. The upscaling policy is thereby a simple nearest



neighbor method to avoid additional overhead. To assess the computational complexity,
the number of attention operations is considered:

L
N = ZQZ ’ (kself + f ’ kcross) (1)
=1

where L is the number of BEV feature layers, ¢; is the number of BEV queries in layer
[, kst and keoss are the number of keys per query for the self- and cross-attentions,
respectively, and f is the number of image feature maps used per BEV grid layer. In our
experiments, we use L = 3 and Kkgif = Keross = 64.

In addition to the complexity reduction, the approach also enables to explicitly encode
global and local features. The BEV grid cells of lower layers correspond to a larger area
in 3D space and thus are able to extract more global information from the image features.
As the number of grid cells increases with every layer, these corresponding areas become
smaller and hence, more locally detailed image features can be extracted.

3.2 Matching Multiscale Image Features

Using multiple image feature maps of different scales has proven to increase the detection
performance of the BEVFormer network [10]. To efficiently incorporate multiscale image
features into the multiscale cross-attention approach, they are fed separately into each
layer of the BEV encoder. This procedure is illustrated in Figure 1. The order of the scales
is chosen from low to high spatial dimension, to further leverage the explicit encoding
of global and local features, discussed in Subsection 3.1. With every encoder layer, the
resolution of the BEV grid increases and simultaneously queries more specific and detailed
image features.

3.3 Query Initialization and Positional Encoding

As the first modification, the positional encodings for the BEV grid are omitted and the
number of learnable BEV queries is reduced to one. To still maintain a grid size larger
than 1 x 1, the learnable query is duplicated and arranged as needed. We hypothesize that
the reduction leads to a better generalization since it is independent from the position
distribution of the ground truth labels. Having different learnable BEV queries at distinct
positions could potentially introduce a bias towards labels that occur more frequently in
one location. By placing the same query in every location, this bias is prevented and the
query learns more global information.

4 Results

We compare our proposed network to the BEVFormer-small and BEVFormer-base con-
figuration. Additionally, we include two smaller networks with a ResNet50 backbone
for a potential deployment, also based on our multiscale cross-attention concept. To
achieve a fair comparison, the training policy and schedule from the original BEVFormer
is adapted [10]. The models are trained on the nuScenes [1] train split without additional
data augmentation and evaluated on the val split. The performance is measured through



the nuScenes native metrics mAP and NDS, as well as our indicator in Eq. (1) for the
computational complexity of the BEV encoder. The results are shown in Table 1.

Table 1: Comparison of the BEVFormer architecture with the proposed modified BEV
encoder. The performance is evaluated on the nuScenes val split. N indicates the
computational complexity of the BEV encoder. L is the number of BEV grid layers and
f is the number of used image feature maps. The BEVFormer results are taken from
[10].

Method Image Image BEV grid size BEV ops mAP NDS
size backbone Bx B L f| N/10°
BEVFormer-base | 1600x900 ResNet101 200 6 4 76.80 41.6  51.7
BEVFormer-small | 1280x720 ResNet101 150 3 1 8.64 37.5 479
By By Bsg
Proposed 1280x720 ResNet101 | 50 100 200 | 3 1 6.62 40.1 514

Proposed-light 1 800x450  ResNetbh0 | 32 64 128 2.75 31.5  42.6
Proposed-light 2 800x450  ResNets0 | 16 32 64 | 3 1 0.69 28.2  39.7

w
=

The proposed network outperforms BEVFormer-small with fewer computations in the
BEV encoder. This shows the effectiveness of the proposed multiscale cross-attention with
matching image features. Although the BEVFormer-base configuration still exceeds the
proposed network, we are able to produce competitive results by requiring significantly
less computations in the BEV encoder. In addition, the BEVFormer-base configuration
has a bigger image input size, more encoder layers, and uses f = 4 different scales of
image features, whereas our approach only uses 3 in total, f = 1 for each layer.

The two proposed light networks use a smaller backbone, smaller final BEV grid sizes,
and a smaller image input size. This makes them a good option for a potential deployment,
showing the scalability of the proposed method. The mAP results are thereby comparable
to other deployment intended camera-only networks such as BEVDet [6].

5 Ablation Studies

For each of the proposed modifications, extensive experiments are conducted and pre-
sented in the following subsections. Here, we use a ResNet50 backbone [4] with an image
input resolution of 800 x 450 pixel. We adapt the same training and evaluation schedules
and parameters as in Section 4.

5.1 Multiscale Cross-Attention

The first ablation study aims to show the influence of multiscale cross-attention and the
matching of multiscale image feature maps individually. For every experiment, we take
the nuScenes metrics and our complexity measure 1 as performance metrics. Table 2
displays the conducted experiments and results. We use the two proposed light networks
from Table 1 as reference configurations, i.e., with three layers and final BEV grid sizes
128 x 128 and 64 x 64, respectively. For each final BEV grid size, we compare the original
cross-attention method without upsampling against our proposed upsampling by factor
of two. Additionally, we test three different image feature input combinations:



e All: In each encoder layer, the BEV queries attend to all three image feature maps
of scales I, Iy, and I3.

e Single: In each encoder layer, the BEV queries attend to a single image feature map
with the smallest spatial dimension, [;.

e Multiscale: In each encoder layer, the BEV queries attend to a different image
feature map with increasing spatial resolution, as shown in Figure 1.

Table 2: Ablation studies of the proposed multiscale cross-attention method for different
BEV grid final sizes, without upsampling or with an upscaling by factor of two, and using
different image feature input combinations. A ResNet50 backbone with an input image
resolution of 800 x 450 pixel is used. The performance is evaluated on the nuScenes val
split. NV indicates the computational complexity of the BEV encoder.

Ablations BEV grid Image feature BEV ops mAP NDS
final size  upscaling | input combinations | N/10°

128 x 128 X All 12.58 30.3 425

128 x 128 X Single 6.29 29.2  40.8

128 x 128 X Multiscale 6.29 30.9 426

128 x 128 v All 5.51 30.4 419

128 x 128 v Single 2.75 29.2  41.0

Proposed-light 1 | 128 x 128 v Multiscale 2.75 31.5 426

64 x 64 X All 3.15 28.7 304

64 x 64 X Single 1.57 273 394

64 x 64 X Multiscale 1.57 28.8 41.1

64 x 64 v All 1.38 28.7  40.3

64 x 64 v Single 0.69 275  39.1

Proposed-light 2 | 64 x 64 v Multiscale 0.69 28.2  39.8

In general, all results with a larger BEV grid size exhibit an overall improved perfor-
mance. Besides that, the general behavior among the two BEV grid sizes are comparable.
For both multiscale and single configuration, the mAP and NDS metrics for our multiscale
and original cross-attention method show similar performance, although the number of
operations of the BEV encoder decreases over 50% for our method. The ablations show
an overall increase of performance when using image feature maps at different scales. Ex-
changing the original multiscale with our matching multiscale approach does not result
in a performance decrease but has the benefit of reducing the computation by a factor
of three. Furthermore, an increase in mAP is experienced when combining the multi-
scale cross-attention with matching image features, when using a final BEV grid size of
128 x 128. However, this configuration does not lead to an enhancement for a final BEV
grid size of 64 x 64, suggesting that the scales of BEV grids and image feature maps must
exhibit a certain ratio to be beneficial.

5.2 Query initialization

To verify our assumption about the impact of the query initialization in Subsection 3.3,
we conducted a small ablation study. The corresponding results are shown in Table 3.
The network architecture for this ablation is the same as Proposed-light 1 in Table 1. In



total, we compare three initialization policies. The first two have 32 x 32 unique learnable
queries with sinusoidal [12] and learned positional encoding [3], respectively. The third
is our initialization approach with only one learned query and zero positional encoding.
As shown in the results, our initialization approach outperforms the original ones in both
mAP and NDS metrics. This supports our hypothesis, that reducing the number of
learned parameters leads to a better generalization across the training dataset.

Table 3: Influence of number of learnable BEV queries and positional encodings during
initialization. The general network architecture is Proposed-light 1, as shown in Table 1.

Learnable BEV queries \ Positional encodings \ mAP NDS

32 x 32 Sinusoidal 30.8 42.4
32 x 32 Learned 30.6 42.0
1x1 Zero 31.5 42.6

6 Conclusion

This paper presents a modified BEVFormer architecture to reduce the computational
complexity of the BEV encoder and obtain a better feature alignment. To this end, we
introduce a multiscale cross-attention method, which upscales the query grid after each
attention layer to produce a final output with high spatial dimensions. Although we
show that the computations of the BEV encoder can be largely reduced by our method,
the image backbone remains a bottleneck when it comes to fast deployment. Hence,
we also considered two light networks with a ResNet50 backbone. We show that a clever
matching of multiscale image feature maps to the multiscale BEV grids leads to an increase
in performance with less operations in the BEV encoder. An extensive ablation study is
conducted, in which we show the effectiveness of our BEV encoder and the influence of
each modification.
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