
Accelerated Dynamic Programming
for Trajectory Planning of Automated Vehicles

Jona Ruof∗ and Klaus Dietmayer

Abstract: For the real-world deployment of automated vehicles general trajectory planning

methods are required. The most versatile planning approaches, such as dynamic programming,

consider many distinct options, which increases their computational effort significantly. There-

fore, previous works often use heuristic search or significantly limit the amount of behavior

options. However, due to recent advances in graphic processing units (GPUs) the available

computational resources have increased tremendously. Thus, this paper reevaluates the use of

the versatile dynamic programming method under consideration of recent hardware. Addition-

ally, an exemplary implementation and evaluation on challenging scenarios such as unsignalized

intersections or unprotected turns is provided. The source code will be released as part of our

trajectory planning library under https://github.com/uulm-mrm/tpl.

Keywords: Automated Driving, Trajectory Planning, Dynamic Programming

1 Introduction

Since the beginning of the automated driving development planning approaches were
required, which could efficiently evaluate many distinct trajectory options in a large search
space. A particular category are graph-based planning methods, which utilize a structured
graph of trajectory segments. In these methods the action and state domain is necessarily
discretized, and the naive approach then evaluates all possible actions in each time step.
However, this increases the computational effort exponentially, where after only a limited
number of time steps prohibitively many actions and states would have to be evaluated.
Thus, an improved construction of the graph or an improved search strategy is required.

The A∗-algorithm [1] improves the search, by not evaluating every possibility, but
relying on a heuristic function to guide the exploration. However, depending on the use-
case, a good heuristic can be complicated to construct. Lattice-based planning methods
therefore utilize exhaustive search, i.e. dynamic programming (DP), and improve the
construction of the graph instead. This is often realized by carefully selecting the possible
actions, such that only a limited, closed set of states can be visited. While this reduces
the computational burden, the limited resolution of the graph can become a hindrance, if
states need to be reached, which are not close to any graph node.

A naive solution is to instead construct the graph in such a way that a more dense
sampling of the state space is achieved. This in turn increases again the computational
cost, but not to an exponential amount, since the set of states in the lattice is still limited.

∗All authors are with the Institute of Measurement-, Control-, and Microtechnology, Ulm University,
Albert-Einstein-Allee 41, 89081 Ulm, Germany. E-Mail: {firstname}.{lastname}@uni-ulm.de

https://github.com/uulm-mrm/tpl

Furthermore, a possible remedy for the increased computational effort is readily provided
by graphic processing units (GPUs). Earlier lattice-planning approaches from the last
decade, already explored the potential of parallelization [2], [3]. But while the capabili-
ties of GPUs have rapidly increased since then, the development of parallel, lattice-based
planning methods has seemingly stalled. We therefore investigate these dynamic pro-
gramming approaches again under consideration of the improved capabilities of currently
available hardware.

The remainder of this paper is structured as follows: After summarizing related liter-
ature in section 2 we will briefly outline necessary fundamentals in section 3, investigate
the requirements and feasibility of parallel planning approaches in section 4, and outline
an exemplary, real-time capable planning method section 5. Finally, we will evaluate the
obtained algorithm on driving problems, like unprotected turns, roundabouts and general
intersections scenarios in section 6.

2 Related Work

In the literature, dynamic programming and related approaches have already been ex-
plored in some variants and applications. In [2] a path lattice is first constructed by
computing pose transitions in a Frenet frame via a shooting method with point mass
dynamics. By assigning velocity profiles with constant acceleration to the paths a spatio-
temporal lattice is obtained, pruned, and searched exhaustively for a cost-minimizing
trajectory. The evaluation on highway scenarios (e.g. overtaking) showed the effective-
ness of the approach. Additionally, a GPU was used to accelerate the search, which lead
to considerable speedups on hardware available at that time (2011). A weakness of [2] is
the greedy pruning strategy, which may prematurely remove viable trajectory candidates.
In contrast, the approach presented in 5 does not require a pruning step.

A later approach by Heinrich et al. [3] follows a strategy very similar to [2]. First,
paths are generated by sampling in a Frenet frame and then velocity profiles are planned
along feasible paths using a dynamic program. In contrast to [2] fifth-order polynomials
are used as longitudinal transitions to increase the degree of continuity of the trajectory.

Where [2], [3] build the lattice during execution, in [4] the state lattice is first con-
structed offline. Hermite interpolation of quintic polynomials is applied to generate motion
primitives between different states of a Frenet frame. After pruning infeasible transitions,
the lattice is exhaustively searched to obtain the trajectory. Since the used lattice is even
sparser compared to [2] no GPU acceleration was investigated. On a CPU the search
problem could already be solved in ≈ 20ms. As limiting factors of the approach the
offline construction and relative sparsity of the lattice may be noted.

For off-road planning, recent work by Botros et al. [5] also utilizes lattice planning
methods. In this work, special consideration was put into the geometric continuity of the
lattice, where G3 curves were used as transitions. By application of an A∗ search a viable
path was then obtained and simplified. Finally, a velocity profile was planned along this
path, which constitutes a path velocity decomposition approach.

Another work by Meng et al. [6] uses lattice planning in combination with numer-
ical smoothing. Initially a comparatively sparse lattice is used to plan a rough motion
profile with a low degree of continuity. Then the motion profile is refined with quadratic
programming under consideration of the dynamics and additional constraints. In [6] this

process is done in a laterally and longitudinally decoupled fashion, which can lead to
suboptimal results in some cases.

A very similar and earlier work by Fan et al. [7] instead utilizes a procedure similar to
the expectation maximization algorithm: Lateral and longitudinal components are opti-
mized separately, but repeatedly for multiple iterations. Each optimization step consists
of a dynamic program, which constructs a rough initial motion, which is then numerically
smoothed. While both [6] and [7] use exhaustive search for the dynamic programming
steps, the states spaces are intentionally kept small by decoupling and exclusion of higher
order derivatives. Thus, GPU acceleration was not required nor investigated.

Another creative approach was examined in a recent publication by Sormoli et al. [8]
and earlier by Sulkowski et al. [9]. In these publications the driving problem is modeled via
fluid dynamics, where the Lattice Boltzmann Method (LBM) is used for flow propagation.
Since the LB-Method is computationally expensive, [8] outlines how parallelization can be
achieved via GPU hardware. While the approach is conceptually distinct from a dynamic
program, the final algorithm and implementation is surprisingly similar to our approach
and is thus referenced here for completeness.

3 Fundamentals

The fundamental principle of dynamic programming is captured by the Bellman equation
[10], which we repeat here briefly: Consider states xt ∈ X from a discrete state space
X and actions ut ∈ U from a likewise discrete action space U at discrete time points
t ∈ {0, ..., T} up to a planning horizon T . States in different time steps are related with
a dynamics function xt+1 = f(xt,ut) and rated by a cost function c(xt+1,ut+1, t) ∈ R+

0 .
Further, the value function v(xt) relates costs from future time steps with the current
time step by the recursive definition

v(xt) = min
ut

[c(xt,ut, t) + v(f(xt,ut))] , (1)

where we select terminal costs c(xT ,uT , T) = v(xT) as boundary condition of the recur-
sion. Since xt,ut are discrete, it is possible to computationally evaluate the value function
by iterating over all possible actions in each state. Note that the formulation presented
above is already a specialized case, where under the assumption of causality, states at t
can only be visited from states in the time step t − 1. This means that, topologically,
states are organized in a directed acyclic graph (DAG), which makes it possible to com-
pute the value function in a single pass of backward induction [10]. For a specific starting
state x0 one can then evaluate Equation 1 forward in time to obtain an ideal sequence of
actions, where the respective states are obtained by application of the dynamics function.
As many works have demonstrated that the exact computation of the value function for
all possible states is computationally expensive, v(xt) is often replaced by an estimate
ṽ(xt) in the minimization. Thus, we also apply an (arguably minor) approximation here,
which will be outlined in the following sections.

4 Requirements and Computational Feasibility

First, this section analyzes the necessary state-space requirements for trajectory planning
in automated driving. The computational complexity arising for a dynamic programming
algorithm using the required state-space is examined subsequently.

4.1 Requirements

Since on-road driving is considered in this work, the state-space is naturally aligned along
the targeted road and given in Frenet coordinates. Practically, this means that the state-
space must contain at least the longitudinal position on the path, the lateral offset to
the left and right, and the velocity along the road. For each of these quantities different
requirements need to be considered.

For the longitudinal dimension it must be ensured that for higher velocities the state
space covers a sufficient distance ahead of the vehicle. As, realistically, the perception
range of many vehicles is rather limited, extending the horizon further would result in
diminishing returns, as the vehicle may not be able to react anyway. Therefore, covering
the longitudinal dimension up to a fixed perception range from 0m to 200m is considered
necessary. Note that, this limit may be dynamically reduced further in regions with a
lower maximum velocity. Even though, the longitudinal dimension thus covers a com-
paratively large distance, its discretization has more lenient requirements. The selected
discretization step effectively decides, which intermediate discrete values are included in
the range 0m − 200m. This becomes most relevant when stopping, as the vehicle can
only assume the discretized longitudinal states. However, since stopping early before an
obstacle is less problematic, the spatial steps can be as high as multiple meters in practice.

For the lateral dimension across the road, its precise size may be dependent on the
road shape itself or rather on the availability of lanes. If there are no further lanes, there
is no need to extend the state space beyond the current lane. Therefore, the critically
necessary lateral space varies. For simplicity, ±5m in the left and right direction are
considered necessary in this analysis, which includes one additional left and right lane.
For the lateral discretization, much finer steps are required compared to the longitudinal
dimensions. In practice, this becomes especially relevant when planning through gaps.

In the velocity dimension, the vehicle needs to be able to assume a wide range of speeds
and target certain specific speed limits. In accordance with UN regulation No. 157 [11]
autonomous vehicles are allowed operation up to a maximum speed limit of 130 kph or
36m/s. Since stopping must always be an option, the velocity state dimension must
naturally cover the entire velocity range from 0 m/s to 36 m/s. Additionally, arbitrary
speed limits may be imposed, where the strictest tolerance for speed limit violation is
usually about 5 kph or 1.3m/s. Therefore, the discretization must be chosen fine enough,
such the speed limits can be respected within the legal tolerances.

While the longitudinal, lateral and velocity dimension cover the primary states of
driving along a road, changes in these quantities cannot happen instantaneously. Instead,
the motions are dependent on previous states and their respective derivatives. To prevent
dynamically infeasible, discontinuous state transitions, higher order derivatives must also
be considered in the state space. Mathematically the continuity of a trajectory can be
defined through membership of continuity classes Cn. A function g ∈ Cn is at least n-

times continuously differentiable. This means that for a trajectory τ , where the action is
a function of a derivative quantity of the state ut = g(x

(n)
t), the trajectory is at most in

Cn−2. To capture realistic vehicle dynamics both the lateral and longitudinal dimension
needs to be at least in C2, as accelerations would be discontinuous otherwise. Practically,
this means that the state space needs to include additionally the lateral velocity, lateral
acceleration and longitudinal acceleration. In summary, a six-dimensional state space is
thus required to capture the dynamics accurately.

4.2 Runtime Complexity and Feasibility

In the previous section, the necessary dimensions of the state space and the respective
required extends are established. Naively, this results in a six-dimensional state space
X = S ×Ṡ × S̈ ×L×L̇×L̈. Thereby, S,L are the set of possible longitudinal and lateral
states, and Ṡ, S̈, L̇, L̈ the sets of their respective derivatives. Likewise, U =

...
S ×

...
L is

the action set composed of the action spaces
...
S ,

...
L of the next higher-order derivatives.

By examining the definition of Equation 1 it becomes apparent, that the computational
complexity of the dynamic programming algorithm is given by

O(T ·N) = O(T · |X | · |U|) = O(T · |S| · |Ṡ| · |S̈| · |L| · |L̇| · |L̈| · |
...
S | · |

...
L|) . (2)

This means that the required value-function evaluations scale linearly with the size of
the planning horizon and the size of the state and action space. Also, the size of each of
the state or action dimensions contributes multiplicatively. Given the requirements from
the previous subsection 4.1, a numeric estimate for N in a possible real world application
can be obtained. Since the longitudinal dimension S can be discretized rather coarsely,
we estimate a regular discretization of 2m, which yields |S| = 101 (including 0) for the
previously established 200m perception range. For the lateral dimension a finer regular
discretization of 0.5m is assumed, yielding |L| = 21. For the longitudinal velocity the
discretization step is bound by the minimal legal speed limit tolerance of 1.3m/s. If arbi-
trary speed limits are assumed, this necessitates a finer discretization of 1m/s resulting in
|S| = 37 for the entire admissible velocity range. Further, optimistic state dimension sizes
of |L̇| = 11, |L̈| = 7, |S̈| = 7 and action dimension sizes |

...
L | = 7, |

...
S | = 7 are assumed.

In summary, this yields ≈ 2.07 · 109 value-function computations per time step, which is
still infeasible for real-time operation on recent hardware. Note that, each value-function
evaluation involves non-trivial computation. This includes, for example, the computation
of a cost or dynamics function and the verification of constraints, such as collision checks.

Obviously, a substantial reduction of the computational effort is thus necessary. Due to
the multiplicative effect of each additional dimension, the most effective alternative is
a reduction of the dimensionality of the state space. This is common in the literature,
as outlined in section 2, where additional smoothing steps are employed to recover a
dynamically feasible trajectory [6]. If, for example, only the dimensions L,S, Ṡ, with
the respective actions L̇, S̈, |L̇| = 7, |S̈| = 7 are considered only ≈ 3.84 · 106 evaluation
are required per-time step. Another option, explored in this work, is the focus on only
the longitudinal components. This approach requires that a path is selected in advance
by a separate path planning step. However, it also avoids additional smoothing steps,
which can be computationally expensive [6]. Using the previously established cardinality

estimates, a total of ≈ 550000 value function evaluations would be required per time
step. If one assumes a trajectory of 10 time steps, approximately 5.5 · 106 evaluations
need to be computed in total. Note that earlier publications, such as [2] (publication
date 2011), assumed computation on this order of magnitude infeasible for real-time
operation. However, on recent (2025) hardware real-time execution is possible, given an
efficient implementation, as outlined in the following sections 5 and 6.

5 Planning Method

As justified in the previous section, the presented algorithm utilizes a path velocity decom-
position approach. For on-road driving, vehicular motions follow relatively simple paths
along a reference line, while most of the complexity stems from the longitudinal move-
ment. Thus, the velocity planning is handled with dynamic programming, while a path
along the reference line is obtained via polynomial sampling. Since the computational
effort is significant, all steps are implemented in parallel via CUDA on a GPU.

5.1 Environment

In this work, access to an environment model is assumed, which provides accurate in-
formation of the objects around the vehicle. In a first step, the information from the
environment model is now converted into grid-based data structures, which can be used
more efficiently in parallel processing. To this end, all object predictions from the en-
vironment model are rendered onto Cartesian grid maps for each considered time step.
Since the trajectory planning will follow a reference path, an environment representation
in a Frenet frame is most practical. Thus, the Cartesian grid maps are then converted
into Frenet grid-maps along the reference line. Next, for each of the grid maps a direc-
tional distance map is computed along the direction of the reference line. This distance
map tremendously simplifies the subsequent collision checks during the planning phase.
It also prevents discretization artifacts, such as the “tunneling” through obstacles, which
can happen when planning higher velocities at a coarse temporal resolution. For clarity,
all processing steps are also visualized in Figure 1.

5.2 Path Planning

Based on the computed distance maps, a path for the vehicle in a Frenet frame around
the given reference line is now planned. To this end, the popular polynomial sampling
method using fith-order polynomials akin to Werling et al. [12] is employed. However,
compared to [12] the polynomials are parameterized over space instead of time. Since
the future velocities of the vehicle are unknown at the path planning stage, a time-based
parameterization is not practical. Among all polynomial paths the jerk-minimal path,
which also allows the most progress along the reference line, is selected. On this path the
dynamic programming algorithm is now applied for velocity planning.

Figure 1: Overview of the different steps of the environmental pre-processing. The
first figure shows an exemplary scenario in UTM coordinates. The ego vehicle is de-
picted in blue, other vehicles in red, and the reference line in gray. The second fig-
ure shows the intermediate Cartesian occupancy map, generated from the detection of
the environment. Occupied space is depicted as white and free space as black. The
third image shows the transformed occupancy map in Frenet coordinates. The space
outside the reference corridor is depicted in white, free space in black, and occupied
space in gray. The fourth image shows the distance map generated from the occupancy
map in Frenet coordinates. The brightness visualizes the distance to the next occu-
pied cell in positive longitudinal direction along the reference line, where black corre-
sponds to non-traversable space. This figure uses aerial images from the DOP20 dataset,
https://www.lgl-bw.de/Produkte/Luftbildprodukte/DOP20/, © LGL, www.lgl-bw.de,
under the license dl-de/by-2-0, www.govdata.de/dl-de/by-2-0.

5.3 Velocity Planning

For the velocity planning, the state space of the considered dynamic program is selected
as X = S × V × A, where V and A are sets of discrete velocity and acceleration values
respectively. A single state xt ∈ X for a time step t thus becomes xt = (st, vt, at)

T .
Thereby st denotes the station on the previously selected polynomial path, vt the velocity,
and at the acceleration along the path. Likewise, the action space U becomes U = J ,
with ut = jt, which corresponds to the longitudinal jerk. Transitions between states, are

then modeled, as movements of constant jerk, with the dynamics f(xt, ut) given by

xt+1 = f(xt, ut) =

st + vt∆t+ 1
2
at∆t2 + 1

6
jt∆t3

vt + at∆t+ 1
2
jt∆t2

at + jt∆t

 , (3)

where ∆t is the temporal difference between two consecutive time steps. Each state and
action is then rated by a cost function c(xt, ut) defined as

c(xt, ut) = wv(vtrg − vt) + wd,safemax(0, st+1 − st − dsafe) (4)

+ waa
2
t + wjj

2
t + wsnap((jt+1 − jt)/∆t)2 . (5)

Thereby, vtrg denotes a target velocity, and dsafe a minimal velocity-dependent, safe dis-
tance to the next obstacle. Additionally, weighting coefficients w(·) are used to tune the
cost function to individual preferences. In addition, hard collision avoidance and velocity
constraints are enforced with

h(xt, ut) = max(0, vt − vlg(st)) + max(0, (st+1 − st)− dlead) , (6)

where vlg denotes the legal speed limit, and dlead is the distance to the leading vehicle. If
h > 0 for any evaluated states, the respective state is marked as invalid and disregarded
in further value-function evaluations.

Using the described dynamics, cost, and constraint functions, the dynamic programming
algorithm is now applied to find a viable trajectory in the state space. To this end, the
value function needs to be evaluated with backward-induction from the last to the first
time step. However, since the dynamics function is continuous, a state xt+1 = f(xt, ut)
obtained via the dynamics, is likely not on any of the discrete states in X . This poses a
problem, as the value-function in the next time step t+1 is only defined at states xt ∈ X .
Since evaluating the value function exactly for all intermediate state is infeasible, an
alternative is needed. However, it can be noted, that the value-function for any contin-
uous next state xt+1 is likely to be similar to its discrete neighbors in X . Therefore, a
value-function estimate ṽ(xt+1) can be obtained by considering these neighboring discrete
states. As outlined in [13], this estimate can be obtained via trilinear interpolation of the
eight, discrete states surrounding any next state xt+1. Apart from this value-function
approximation, the dynamic programming algorithm proceeds as outlined in section 3.

6 Evaluation

To evaluate the proposed method, three simulated scenarios are examined in the follow-
ing. First qualitative results are presented in subsection 6.4, where the trade-off between
computation time and solution quality is discussed in subsection 6.5.

6.1 Simulation Environment

All scenarios were executed with the simulation environment of the trajectory planning
library available at https://github.com/uulm-mrm/tpl. Thereby, the ego vehicle move-
ment is computed with a kinematic bicycle model, while participating vehicles are simu-
lated using the intelligent driver model (IDM) [14]. Additionally, the maximum absolute

https://github.com/uulm-mrm/tpl

Table 1: Parameters of the planning method used for all scenarios

Parameter(s) Value(s)

smin, smax, vmin, vmax, amin, amax 0m, 200m, 0m/s, 36m/s, −1.5m/s2, 1.5m/s2

jmin, jmax −1.5m/s3, 1.5m/s3

|S|, |V|, |A|, |J | 201, 37, 9, 7
T , ∆t 9 s, 1.0 s
vtrg, vlg 100.0, 13.88

wv, wd,safe, wa, wj, wsnap 0.5, 10.0, 1.0, 1.0, 0.5

acceleration actions of the IDM are clipped at ±3m/s. This intentionally removes the
collision-free property of the IDM. Thus, reckless behavior of the ego-vehicle can lead to
collisions, which are then detected by the simulator. The simulated vehicles are provided
to an environment model as raw detections. This means that the tracking and predic-
tion algorithms of the environment model are also executed during the scenario, which
improves the simulation fidelity. For the reference line, either precise map data captured
manually using RTK-GPS1 or map data extracted from aerial images was utilized.

6.2 Parameters

The parameters, used for the construction of the state/action space, and the cost function
parameters are summarized in Table 1. Unless specified otherwise, these parameters are
unchanged for all scenarios. The state space limits and discretization steps were chosen
as explained in section 4. The cost function parameters were determined experimentally,
with a focus on obtaining smooth driving behavior.

6.3 Implementation Details

The proposed method is implemented in CUDA utilizing an Nvidia RTX 3090 GPU,
where the value-function evaluation is parallelized over all states in a specific time step t.
Since v(xt) is dependent on v(xt+1) the time steps must still be processed sequentially.
To efficiently implement the approximation ṽ, the results of each value-function evalua-
tion are stored in a three-dimensional CUDA texture. Textures have the advantage that
interpolated access is supported directly by specialized hardware of the GPU. Practically,
this means that even though eight memory locations need to be accessed and combined,
the interpolated texture access is not significantly slower compared to discrete memory
access. In practice, this reduces the total runtime of the dynamic program significantly,
which enables a real-time capable implementation and evaluation.

During all scenarios the proposed planning method is executed with a replanning rate
of 1Hz. The start of the trajectory is reinitialized from the previously planned trajectory,
shifted by the time since the last planning step. As the environment may change drasti-
cally even between replanning cycles, the current trajectory is also continuously validated
between replanning steps. This validation only recomputes the cost and constraint func-
tions for the current trajectory and is, therefore, very computationally inexpensive. If the

1Real-Time Kinematics Global Positioning System

trajectory becomes invalid, a replanning step is triggered immediately. This way short
reaction times are guaranteed, while the load on the GPU is reduced. Additionally, if even
the replanning fails to compute a trajectory without constraint violation, an emergency
mode is activated. This mode locks the current steering angle and applies a constant
acceleration of −6m/s until standstill.

To ensure tracking of the computed trajectory by the simulated vehicle, a PI-controller
is employed for longitudinal control. Thereby, the trajectory acceleration is used as a
feedforward term, and the station and velocity error along the trajectory as tracking error.
For the lateral control, a geometric Stanley controller [15] with an additional feedforward
term based on the trajectory curvature is utilized.

6.4 Qualitative Results

To obtain a qualitative impression of the behavior of the planning approach, the described
setup was applied on three simulated scenarios. The results for each scenario are depicted
in Figure 2 and Figure 3. Broadly, all scenarios can be classified as intersection scenarios,
where the ego path conflicts with the path of other traffic participants. Three different
road topologies were considered, namely, a roundabout, an unsignalized intersection, and
an unprotected left turn. For the roundabout scenario the planner initially (t = 0 s)
approaches the roundabout with moderate velocity and decelerates smoothly until t ≈
4.5 s to let a vehicle coming from the left pass. Then it accelerates again until t ≈ 7 s
to enter the roundabout and reduces its velocity to follow the slower vehicles in the
roundabout. Note that, the planning algorithm determined that stopping was not required
in this case, which enabled efficient merging. In the unsignalized intersection scenario,
multiple vehicles from the left and the right need to be prioritized. Since the intersection
seems to be blocked for a longer duration, the planner decides to decelerate slowly until
t ≈ 12 s. Only after all vehicles have passed, the planner accelerates again leaving the
intersection. In the unprotected left turn scenario, the planner starts before the sizeable
intersection at t = 0 s. However, since the lane conflicting with the left turn is further
ahead, the planner readily enters the intersection. Due to prioritized traffic coming from
the north, it then reduces the vehicle velocity until near standstill at t ≈ 12 s. Only after
the vehicles have cleared the intersection, it applies sustained acceleration to pass the
intersection quickly.

Note that, during all scenarios, the other traffic participants did not behave exactly as
predicted by the environment model. While the environment model, applies a constant
velocity prediction, the simulator moves the vehicles using the IDM, thus causing varying
vehicle accelerations. Due to the fact that the planner considers a relatively large planning
horizon of T = 9 s, changing predictions further in the future can be accounted for with
a small impact on the current acceleration. Additionally, the constant revalidation and
replanning of the trajectories detects and prevents critical situations early. It must be
stressed that the replanning is only triggered on constraint violations, while the cost
function additionally pushes the ego vehicle away from obstacles. Intuitively this means,
that each replanned trajectory includes a “cost buffer zone”, which can be reduced by
changing predictions, without immediately invalidating the trajectory.

570660 570680 570700 570720 570740
x in m

20

40

60

80

y
in

 m

+5.364e6

0 5 10
t in s

6

7

v
in

 m
/s

0 5 10
t in s

-2.5

0.0

2.5

a
 i
n
 m

/s
2

569360 569380 569400 569420 569440
x in m

780

800

820

840

860

y
in

 m

+5.363e6

0 10 20
t in s

5

10

v
in

 m
/s

0 10 20
t in s

-2.5

0.0

2.5

a
 i
n
 m

/s
2

Figure 2: Shows the longitudinal behavior of the proposed method in a simulated round-
about and an unsignalized intersection scenario. The left column depicts a top-down
overview in UTM coordinates at t = 5 s and t = 2 s respectively. The ego-vehicle is de-
picted in blue, other vehicles in red, the planned trajectory in orange, the route borders in
dark gray and the route center in light gray. The right column shows the plot of the ego ve-
locity (blue) and acceleration (orange) during the scenarios. This figure uses aerial images
from the DOP20 dataset, https://www.lgl-bw.de/Produkte/Luftbildprodukte/DOP20/,
© LGL, www.lgl-bw.de, under the license dl-de/by-2-0, www.govdata.de/dl-de/by-2-0.

570750 570775 570800 570825
x in m

260

280

300

320

340

y
in

 m
+5.364e6

0 10 20
t in s

0

5

v
in

 m
/s

0 10 20
t in s

-2.5

0.0

2.5

a
 i
n
 m

/s
2

Figure 3: Shows the longitudinal behavior of the proposed method, in a simulated, un-
protected left turn scenario, with notation identical to Figure 2. The overview on the left
shows the scenario at t = 2 s. This figure uses aerial images from the DOP20 dataset,
https://www.lgl-bw.de/Produkte/Luftbildprodukte/DOP20/, © LGL, www.lgl-bw.de,
under the license dl-de/by-2-0, www.govdata.de/dl-de/by-2-0.

6.5 Runtime and Solution Quality

To evaluate the impact of the state space size |X | on the runtime and solution quality, the
roundabout scenario was simulated repeatedly, while varying the number of discretized
longitudinal positions |S| and velocities |V|. Thereby, only the number of discretization
steps was changed, while the limits of the state space were kept constant. As cost of the
planned behavior, we consider the sum of the absolute longitudinal jerk J =

∑D
t=0 |jt|,

captured during the duration D of the scenario. Additionally, the cost is marked as invalid
(denoted “−−”), if a collision occurs, the vehicle leaves the route, or fails to finish the
scenario within 60 s. Note that, the cost is intentionally not normalized over the scenario
duration. This way, solutions with low jerk and fast progress accumulate the least cost.

The results of this evaluation are depicted in the Figure 4. Most noteably, the left figure
shows, that below a certain amount of discretization steps the proposed method cannot
find a valid solution. This holds for small |S| or |V| and also for moderate |S| and |V|.
Among all combinations with valid results, the accumulated costs are relatively similar.
Still, higher values for |S|, |V| yield comparatively lower costs. This is expected as more
values in the state space allow a more accurate estimation of the value function. In fact,
the lowest costs are achived for the second-largest configuration |S| = 157, |V| = 37.

Additionally, the runtime of the planning algorithm for varying dimension sizes is depicted
on the right side of Figure 4. As expected, evaluating more states generally leads to
higher average runtimes. However, due to the efficient, parallel GPU implementation the

21 67 111 157 201

|S|

37

31

25

17

11

|V
|

-- 102 111 87 94

-- 121 144 102 101

-- 148 130 109 118

-- -- 122 121 112

-- -- -- -- --

90

100

110

120

130

140

co
st

21 67 111 157 201

|S|

37

31

25

17

11

|V
|

2.7 3.5 5.1 5.5 6.1

2.4 3.3 4.1 5.3 5.7

2.3 3.2 3.9 4.9 5.3

2.4 2.9 3.5 3.9 5.0

2.4 2.7 3.1 3.5 3.9 3

4

5

6

ru
n
ti
m

e
in

 m
s

Figure 4: The left plot shows the accumulated cost during the repeated execution of the
roundabout scenario from Figure 2, while varying the amount of discrete values in the
station and velocity dimension. For each entry the costs have been average over 5 scenario
runs with different intial states of the participating vehicles. Fields, where at least one
of the scenario runs did produce an invalid result, are denoted as “−−” and marked in
black. In the right plot, the corresponding average runtime per planning cycle over all
scenario runs of the combined path and velocity planning are displayed.

absolute runtimes are comparatively small in all configurations. While the state space size
increases by a factor of ≈ 32, from |S| = 21, |V| = 11 to |S| = 201, |V| = 37, the runtime
only increases by a factor of ≈ 2.5. Thus, a real-time implementation can be considered
feasible, even when utilizing embedded hardware during real-world deployment.

7 Conclusion

In this paper, we examined the dynamic programming concept for trajectory planning of
autonomous vehicles. The analysis of the expected application requirements and runtime
complexity concludes that a specialized implementation of the algorithm is feasible on
current GPU hardware. If increased runtime is permissible, even more accurate and higher
quality results may be obtained offline. On a variety of non-trivial scenarios like e.g.,
roundabout traversal, unsignalized intersections, and unprotected left turns, promising
results can be demonstrated in simulation, thus motivating further research. Therefore,
it can be concluded that the dynamic programming algorithm should be regarded as a
viable tool for online planning and offline validation applications.

References

[1] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[2] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for
autonomous driving with a conformal spatiotemporal lattice,” in 2011 IEEE Int.
Conf. on Robotics and Automation, pp. 4889–4895, May 2011. ISSN: 1050-4729.

[3] S. Heinrich, A. Zoufahl, and R. Rojas, “Real-time trajectory optimization under
motion uncertainty using a GPU,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3572–3577, Sept. 2015.

[4] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajectory planning
in dynamic on-road driving scenarios,” in 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1879–1884, Oct. 2009. ISSN: 2153-0866.

[5] A. Botros and S. L. Smith, “Spatio-Temporal Lattice Planning Using Optimal Motion
Primitives,” IEEE Tran. on Intel. Transp. Sys., vol. 24, pp. 11950–11962, Nov. 2023.

[6] Y. Meng, Y. Wu, Q. Gu, and L. Liu, “A Decoupled Trajectory Planning Framework
Based on the Integration of Lattice Searching and Convex Optimization,” IEEE
Access, vol. 7, pp. 130530–130551, 2019.

[7] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and
Q. Kong, “Baidu Apollo EM Motion Planner,” July 2018. arXiv:1807.08048 [cs].

[8] M. A. Sormoli, K. Koufos, M. Dianati, and R. Woodman, “Towards A General-
Purpose Motion Planning for Autonomous Vehicles Using Fluid Dynamics,” June
2024. arXiv:2406.05708.

[9] T. Sulkowski, P. Bugiel, and J. Izydorczyk, “Dynamic Trajectory Planning for Au-
tonomous Driving Based on Fluid Simulation,” in 2019 24th Int. Conf. on Methods
and Models in Automation and Robotics (MMAR), pp. 265–268, Aug. 2019.

[10] R. Bellman, R. Bellman, and R. Corporation, Dynamic Programming. Rand Corpo-
ration research study, Princeton University Press, 1957.

[11] United Nations Economic and Social Council, “Proposal for the 01 series of amend-
ments to un regulation no. 157,” 2022.

[12] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation
for dynamic street scenarios in a frenét frame,” Proceedings - IEEE Int. Conf. on
Robotics and Automation, pp. 987–993, 2010. ISBN: 9781424450381.

[13] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[14] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical
observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805,
2000.

[15] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous au-
tomobile trajectory tracking for off-road driving: Controller design, experimental
validation and racing,” in 2007 Am. Control Conference, pp. 2296–2301, IEEE, 2007.

	Introduction
	Related Work
	Fundamentals
	Requirements and Computational Feasibility
	Requirements
	Runtime Complexity and Feasibility

	Planning Method
	Environment
	Path Planning
	Velocity Planning

	Evaluation
	Simulation Environment
	Parameters
	Implementation Details
	Qualitative Results
	Runtime and Solution Quality

	Conclusion

