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Abstract:
Using HD maps directly as training data for machine learning tasks has seen a massive

surge in popularity and shown promising results, e.g. in the field of map perception. Despite
that, a standardized HD map framework supporting all parts of map-based automated driving
and training label generation from map data does not exist. Furthermore, feeding map percep-
tion models with map data as part of the input during real-time inference is not addressed by
the research community. In order to fill this gap, we present lanelet2_ml_converter, an inte-
grated extension to the HD map framework Lanelet2, widely used in automated driving systems
by academia and industry. With this addition Lanelet2 unifies map based automated driving,
machine learning inference and training, all from a single source of map data and format. Re-
quirements for a unified framework are analyzed and the implementation of these requirements
is described. The usability of labels in state of the art machine learning is demonstrated with
application examples from the field of map perception. The source code is available embedded
in the Lanelet2 framework under https://github.com/fzi-forschungszentrum-informatik/
Lanelet2/tree/feature_ml_converter.

1 Introduction
HD Maps

In many of today’s automated driving stacks, high-definition (HD) maps are used as an
essential component. By providing static contextual information, HD maps can com-
plement a vehicle’s sensor suite and online perception, which can suffer from occlusion,
limited sensor range or poor weather conditions. Due to their wide field of applications
and the lack of an established map standard, HD maps can come in a wide range of for-
mats. These map formats are usually tailored for one specific task or software stack and
created by a specific map manufacturer, such as TomTom [1] and HERE [2]. Hence, map
formats are hardly compatible and the corresponding software suite to create, maintain
or further develop the map and its format is generally not publicly available.
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Figure 1: Usage and applications of the software module. Together with the module,
a Lanelet2 map can be used as a unified format for both map-based highly automated
driving and as labels for a variety of map perception and map-based learning tasks.

Lanelet2

In order to fill this gap, [3] provides the software map framework Lanelet2. It aims to define
a unified map framework which is suitable for serving a comprehensive range of automated
driving tasks. In contrast to many other map formats, e.g. OpenDRIVE [4], Lanelet2 is
modelled bottom-up which allows a modular and flexible representation of complex road
topologies and intersections. The relational and topological layers emerge bottom-up from
the physical layer and form the basis of the Lanelet2 philosophy. The Lanelet2 framework
is furthermore equipped with a set of tools for simple and standardized creation of new
HD maps, data retrieval, handling of map information on multiple abstraction layers and
efficient real-world application in automated driving systems. Since its release in 2018,
Lanelet2 has been widely adopted and applied in various academic and industrial projects.
Support has been demonstrated for many applications such as semantic localization [5],
HD map creation [6] and behavior planning [7], [8]. Lanelet2 is the default HD map
format in most datasets related to planning and prediction tasks [6]–[12]. In this context
the research community developed tools to convert maps into the Lanelet2 format if the
supplied map is not available in this format. The extensive functionalities of Lanelet2,
efficient implementation and ROS 1/2 support [13] enable most modern academic and
open-source automated driving stacks [14].

Online Map Perception

Map perception is one of the key technologies in scaling automated driving. Online map
perception can compensate outdated or incomplete map data, extending the available
geolocations of automated driving systems and offline map perception can support cloud
mapping and map updates. Training of map perception models is feasible for academic
research, thanks to the release of several large-scale sensor datasets [15]–[19], that include
either city-wide or scenario-specific maps on a lane-level with corresponding sensor data.
Usual maps released with sensor datasets are published in a custom format, with varying



fidelity and map content without a standardized API and format. These maps and sup-
porting software have not demonstrated the ability to run classic map based automated
driving software stacks such as Autoware [14] and do not implement or support features
such as path planning, map validation or routing.

Contributions

In the following we summarize the main contributions of this work:

• We motivate the need for a unified HD map format and framework that is flexible
enough to be used in fully map based driving, can derive map information of different
abstraction levels and thus allows for training map perception models.

• We define a set of requirements for a framework that is suitable for generating
training data from HD maps.

• Embedded in the Lanelet2 library, we design an extension of the framework that
follows this set of requirements. We describe implementation details and provide
source-code.

• We demonstrate how the lanelet2_ml_converter extension generates training data
from Lanelet2 maps for a variety of recent map perception problems in different
abstraction layers.

2 Requirements for Modern HD Map Frameworks
In this section we specify the requirements needed to exceed the state of the art provided
by [3], [4] and especially datasets like nuScenes [18] or Argoverse 2 [20], for online map
perception and learning from 3D map labels.

Unified HD Map Framework for Automated Driving and Deep Learning In-
ference and Training

To implement state of the art map perception in automated driving systems, a HD map
framework needs to support training data generation as well as fast online local instance
label retrieval in the necessary inference representation. Additionally support for classical
tasks like manual and automatic mapping, map updates, behavior generation and path
planning are necessary to build a automated driving system and can not be disregarded.
Local instance label retrieval methods are implemented by [21][19], but their high runtime
latency and a generally offline oriented software framework hinder progress in real-world
application of these methods.

Generation of Training Labels from Maps

These local instance labels are used in offline applications like scalable label generation
for perception, given a high-quality localization. Ideally these local instances include not
only physically present features such as road markings, but also high level information
such as yielding rules, the lane-graph structure given by the relationship to lane successors
and neighbors, driving directions and relationships to traffic elements as signs and lights.



Traceability

In case of corrupted or false instance labels, it is necessary to backtrace them to their
origin in the HD map. This demands a traceable connection between a instance label
and the corresponding map element it is derived from. This can be extended up to the
underlying mapping process of the map element, allowing for full quality control.

Map Validation

HD Maps included in publicly available automated driving datasets lack the provided
software API or formal definition to check for validity regarding traffic rule compliance
and traffic flow consistency. A map validation module within the map framework can
ensure a more meaningful, consistent and less error-prone label generation. This is es-
pecially crucial for the generation of higher-level training labels, which are inferred from
multiple interacting map annotations and are sensitive to incomplete or inconsistent map
annotations. A well tested system for this is provided by the Lanelet2 validation software
module [3], however it is not usable for map labels without a process to generate labels
directly from Lanelet2 maps, like in the extension proposed in this paper.

Independence of Label Instances from Map Annotation Artifacts

Both manual and automatic mapping can produce almost infinitely many permutations
of map element annotations, with different polyline point positions, ordering, breaks in
polylines, and resulting lane subdivisions into lanelets. All these annotation permutations
can represent the very same objects and information in the real world. To ensure con-
sistency, a unambiguous representation of the corresponding instance label needs to be
derivable for map elements.

Support for Varying Local Reference Frame Poses

Different datasets and mapping setups, produce reference frame poses with varying degrees
of freedom. Training on custom setups and public datasets requires support for varying
pose qualities.

Real-Time Capability

While the generation of training data is usually performed offline, an online application
of the new module would be required to fuse the map perception with prior knowledge
given by the HD map. This would require a high-performant implementation regard-
ing the processing of selected map elements and their conversion to efficient numerical
representations.

3 Implementation
This chapter describes the extension of the Lanelet2 framework implementing the require-
ments specified in section 2.
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Figure 2: Visualization of compound labels and the elimination of overlaps. The overlap-
ping compound road borders 2 and 4 are eliminated in favor of the larger compound road
borders 5 and 6.

Compound Labels for Independence from Map Annotation Artifacts

To implement the essential requirement of independence from map annotation artifacts,
both local and non-local, we make use of a concept we name “compound labels”. The
underlying idea is used in many online HD map construction models (e.g. [22], [23]) and
replaces each coherent chain of individual polylines with one single polyline. Lanelet2
and most other map formats divide the road into smaller subsegments, often referred to
as lanelets. While this has many advantages like map consistency and non-duplication, it
also causes issues with local instance label generation for map learning.

A coherent chain of polylines of the same type can be replaced by a single line, greatly
simplifying the learning task for the HD map construction model.

Compound Label Generation

The consistent and universally applicable generation of these compound labels encom-
passes a significant part of the implementation and is described here in greater detail. In
general, the algorithm uses the routing graph from [24] of the region of interest submap
to extract all possible lanelet paths in the submap and follows those paths to merge the
individual lanelet boundaries into compound labels.

The path following is executed by a recursive algorithm, which is initialized by the set
of lanelets without a predecessor in the routing graph of the local submap. A path of such
a lanelets successors is followed until a lanelet no longer has any successors, recursively
branching for a lanelet which has multiple successors. Figure 2 shows the paths generated
in this fashion for an example road segment.

From the created paths, compound labels are composed of the left and right boundaries
of the path lanelets as well as their centerlines, splitting at changes of the boundary type
for the boundary labels. As illustrated by Figure 2, the right border of path 1 results in
two compound labels due to the change from road border to dashed line.

Since the same lanelet can be passed through by multiple paths, multiple compound



labels containing the same map element can be created. This is also the case for lane
borders shared by two adjacent lanelets. A map polyline can only ever be part of one
compound label, so we can eliminate all but one of the overlapping compound labels. This
is also shown in Figure 2, where the smaller compound road borders 2 and 4 of path 1
and 2 are eliminated in favor of the larger compound road borders 5 and 6, also from path
1 and 2 respectively. The elimination of overlapping labels is not performed for the lane
centerlines, as the underlying assumption is not applicable in this case and the training
with independent path labels has been shown to improve performance [25].

All local instance labels are cropped with respect to the region of interest and resam-
pled with a fixed number of points if needed.

Traceability

(a) Original local instance labels (b) Different local instance labels

Figure 3: Traceability of labels in local instance labels. Every label is associated with
the underlying map element, visualized here with the letters A to D. This association is
maintained over local instance labels. Compound labels have traceability of the composing
labels available as well.

A key requirement for ground truth generation in scale is the traceability of labels
to the origin of their data, which in our case is the underlying Lanelet2 map. This
requirement is fulfilled here using the unique ID of each map element in a Lanelet2 map.
The ID of the underlying map element is available for every local instance label and
carried through all processing steps, preserving traceability across geometric operations.
An example can be seen in 3, where labels A-D are uniquely identified across different
local reference frames based on their associated map element ID.

The association with map elements is preserved for compound labels as well, which
contain the IDs of the map elements they are composed of as well as the arc lengths of
the individual labels in the compounded polyline. Centerline labels are associated to the
respective lanelet instead.

Support for Varying Local Reference Frame Poses

lanelet2_ml_converter supports 3D reference frame poses composed of a 2D position on
a flat plane and heading of the vehicle as the minimum required input. To generate the
highest quality of local instance labels, up to full 6D reference frame poses can be used.



Real-Time Capable Implementation

To enable online inference of models that use map data as an input, not just as training
labels, a real time capable implementation is necessary. The extension is therefore realized
in a highly performant C++ implementation, averaging a single threaded performance of
3 ms for generating a set of local instance labels from a map, including conversions to
learning representations, on a Intel i7-11800H processor.

4 Application examples

Road Borders Lane Dividers Centerline Paths
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Figure 4: Labels for road borders, lane dividers and
lane centerline paths with different fixed point numbers
similar to the labels in MapTR [22] and MapTRV2 [21].

Figure 5: Labels for lanelet cen-
terlines with connectivity simi-
lar to OpenLaneV2 [19].

The map instance labels supplied from the extension can be used to supervise a wide
variety of map perception training tasks. Besides perception, other map-based learning
tasks using map data as input such as trajectory prediction can be fed by this work.
In the following we demonstrate the flexibility of the resulting local label instances with
three popular application examples from the field of map perception.

MapTR: Online HD Map Construction

One of the key features of the recent MapTR architecture for vectorized map perception is
the representation of map elements as compounded linestrings with a fixed point number.
This is natively supported in the extension and all element types can be separately used
and easily resampled with a chosen fixed point number. Figure 4 shows the default element
types with both a 8-point and 20-point representation.

To validate the effectiveness of the extension and show examples for the newly possible
training tasks, we also apply it to the Argoverse 2 dataset [17] to train a model with
the MapTRV2 [21] architecture. The available maps in Argoverse 2 are converted to a
temporary rudimentary Lanelet2 map during the label generation to be compatible with
lanelet2_ml_converter. Contrary to other available methods, this allows us to easily
separate the commonly used single divider class into dashed and solid lane dividers as
well as fix some bugs in the label generation process. This distinction is missing from
currently used training labels, but crucial for prediction and planning in autonomous
vehicles.

Table 1 shows the resulting metrics in comparison with the baseline without distinct
divider types. Even though the training task is substantially more difficult, performance



Labels Epoch APdiv APdsh APsol APped APbou APcen mAP
No Divider Types 18 72.1 - - 60.0 68.9 66.0 66.7
Dashed / Solid 18 - 61.5 68.8 60.4 68.1 66.6 65.1

Table 1: Performance Metrics of MapTRV2 [21] on Argoverse 2 [17] depending on the
chosen divider label representation

is still comparable, with the AP for pedestrian crossings and centerlines even slightly
increasing. This further strengthens the suggestion of the proposed labels being a better
representation of reality. Fig. 6 shows an example of the different labels for a scene,
changing the representation in a large way for downstream prediction and planning tasks.
An example of the previously mentioned bugs in the original labels can also be observed
implicitly from the output in fig. 6b, the solid divider in the middle of the road, present
in the new labels in fig. 6d, is missing here.

(a) Input images with dashed / solid predictions
(b) Standard
pred.

(c) Dashed /
solid pred.

(d) Dashed /
solid GT

Figure 6: MapTRV2 [21] prediction sample for the standard and dashed / solid divider
labels. Red denotes road borders, blue pedestrian crossings and green centerlines. Yellow
denotes either dashed lane dividers or the standard single divider type and dark yellow
solid dividers.

OpenLaneV2: Topology Inference

Another important area in map perception is scene topology inference, the inference of
higher level information such as lane connectivity and traffic element to lane association.
Topology inference has seen a large boost in research activity from the OpenLaneV2
dataset [19], a new large-scale dataset that explicitly includes higher level labels of this
kind. The label representation used in OpenLaneV2 can easily be mirrored from the
label instances in the extension, with both lanelet centerlines and their connectivity edges
already part of the label data. A visualization of the formed graph can be seen in figure
5.

Online Map Inference and Fusion

The full traceability of all labels to their underlying map elements and the real time
capability of the extension enable another application so far unsupported by existing



map data converters: Online map fusion of incomplete maps or updating existing map
elements[26]. The Argoverse 2 dataset defines a similar task with the trust-but-verify
subset [15] and this extension bridges the gap towards applicability in a real system using
a unified, standardized HD map framework for all parts of an automated driving stack.

5 Conclusions and Future Work
This work describes a extension to the Lanelet2 framework that enables data generation
for online map perception in automated driving. The current state of HD map formats and
frameworks is reviewed and based on new developments in HD maps and map perception,
the need for a unified HD map format and framework that can enable both fully map
based driving and map perception tasks is motivated. Our proposed requirements for such
a framework are described together with limitations of currently available alternatives.
We detail the implementation of these requirements by this Lanelet2 extension and finally
show application examples for recent popular map perception tasks. Future work could
include improved support for non-road features such as traffic lights and traffic signs.

Acknowledgements
We would like to thank our research partner Mercedes-Benz AG for the fruitful collabo-
ration.

References
[1] TomTom International BV. (2024). ASAM OpenDRIVE 1.8.0, Static Road Network Description.

Accessed on: 2024-/01-21, [Online]. Available: https://www.tomtom.com/products/hd-map/.

[2] HERE. (2024). Maps for ADAS and HAD. Accessed on: 2024-/01-21, [Online]. Available: https:
//www.here.com/platform/adas-had.

[3] F. Poggenhans, J. H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, et al., “Lanelet2: A high-
definition map framework for the future of automated driving,” in IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, 2018, isbn: 9781728103235.

[4] ASAM e.V. (2023). HDMap: Precise HD maps for safe autonomous driving. Accessed on: 2024-/01-
21, [Online]. Available: https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/
ASAM_OpenDRIVE_Specification/latest/specification/index.html.

[5] J.-H. Pauls, K. Petek, F. Poggenhans, and C. Stiller, “Monocular localization in hd maps by
combining semantic segmentation and distance transform,” in 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2020, pp. 4595–4601.

[6] Y. Xu, W. Shao, J. Li, K. Yang, W. Wang, H. Huang, et al., Sind: A drone dataset at signalized
intersection in china, 2022. arXiv: 2209.02297 [cs.CV].

[7] M. Szántó, C. Hidalgo, L. González, J. P. Rastelli, E. Asua, and L. Vajta, “Trajectory planning of
automated vehicles using real-time map updates,” IEEE Access, vol. 11, pp. 67 468–67 481, 2023.

[8] D. Majstorovic and F. Diermeyer, Dynamic collaborative path planning for remote assistance of
highly-automated vehicles, 2023. arXiv: 2308.15167 [cs.RO].

[9] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The ind dataset: A drone
dataset of naturalistic road user trajectories at german intersections,” in 2020 IEEE Intelligent
Vehicles Symposium (IV), 2020, pp. 1929–1934.

https://www.tomtom.com/products/hd-map/
https://www.here.com/platform/adas-had
https://www.here.com/platform/adas-had
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/index.html
https://publications.pages.asam.net/standards/ASAM_OpenDRIVE/ASAM_OpenDRIVE_Specification/latest/specification/index.html
https://arxiv.org/abs/2209.02297
https://arxiv.org/abs/2308.15167


[10] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated driving
systems,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 2118–2125.

[11] R. Krajewski, T. Moers, J. Bock, L. Vater, and L. Eckstein, “The round dataset: A drone dataset
of road user trajectories at roundabouts in germany,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.

[12] T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein, “The exid dataset: A
real-world trajectory dataset of highly interactive highway scenarios in germany,” in 2022 IEEE
Intelligent Vehicles Symposium (IV), 2022, pp. 958–964.

[13] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2:
Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, eabm6074, 2022.

[14] Autoware Foundation. (2023). Autoware documentation. Accessed on: 2024-/01-21, [Online]. Avail-
able: https://autowarefoundation.github.io/autoware-documentation/main/.

[15] J. Lambert and J. Hays, “Trust, but verify: Cross-modality fusion for hd map change detection,”
in Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks,
J. Vanschoren and S. Yeung, Eds., vol. 1, Curran, 2021.

[16] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, et al., “Scalability in
perception for autonomous driving: Waymo open dataset,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.

[17] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, et al., Argoverse 2: Next
generation datasets for self-driving perception and forecasting, 2023. arXiv: 2301.00493 [cs.CV].

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, et al., “Nuscenes: A multimodal
dataset for autonomous driving,” in CVPR, 2020.

[19] H. Wang, T. Li, Y. Li, L. Chen, C. Sima, Z. Liu, et al., “Openlane-v2: A topology reasoning bench-
mark for unified 3d hd mapping,” in Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

[20] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, et al., “Argoverse 2: Next gen-
eration datasets for self-driving perception and forecasting,” in Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks
2021), 2021.

[21] B. Liao, S. Chen, Y. Zhang, B. Jiang, Q. Zhang, W. Liu, et al., “Maptrv2: An end-to-end framework
for online vectorized hd map construction,” arXiv preprint arXiv:2308.05736, 2023.

[22] B. Liao, S. Chen, X. Wang, T. Cheng, Q. Zhang, W. Liu, et al., “Maptr: Structured modeling and
learning for online vectorized hd map construction,” in The Eleventh International Conference on
Learning Representations, 2022.

[23] Y. Liu, T. Yuan, Y. Wang, Y. Wang, and H. Zhao, “VectorMapNet: End-to-end vectorized HD map
learning,” in Proceedings of the 40th International Conference on Machine Learning, A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., ser. Proceedings of Machine
Learning Research, vol. 202, PMLR, 23–29 Jul 2023, pp. 22 352–22 369.

[24] F. Poggenhans and J. Janosovits, “Pathfinding and routing for automated driving in the lanelet2
map framework,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Sys-
tems, ITSC 2020, 2020.

[25] B. Liao, S. Chen, B. Jiang, T. Cheng, Q. Zhang, W. Liu, et al., “Lane graph as path: Continuity-
preserving path-wise modeling for online lane graph construction,” arXiv preprint arXiv:2303.08815,
2023.

[26] R. Sun, L. Yang, D. Lingrand, and F. Precioso, “Mind the map! Accounting for existing map
information when estimating online HDMaps from sensor data,” arXiv, Tech. Rep., Nov. 2023,
arXiv:2311.10517 [cs] type: article.

https://autowarefoundation.github.io/autoware-documentation/main/
https://arxiv.org/abs/2301.00493

	Introduction
	Requirements for Modern HD Map Frameworks
	Implementation
	Application examples
	Conclusions and Future Work

