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Abstract: Connected driving simulators are effective tools for collecting driving behavior data.

This work proposes an experimental design to create natural driver interaction scenarios, ver-

ified through a pilot and main study. The results, showing an 88% interaction success rate,

demonstrate the framework’s effectiveness and offer practical insights for researchers in driving

behavior and human factors research.
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1 Introduction

Incorporating social interaction capabilities into autonomous vehicles is vital for them to
exist together with human-driven vehicles in future shared traffic environments. Without
these skills, autonomous vehicles might misunderstand what other drivers intend to do.
This misunderstanding could lead to traffic jams or even accidents [1]. However, in real
traffic, rich interactions between drivers do not always happen. Most human drivers drive
alone, responding to the physical environment instead of directly interacting with other
road users in most tasks, like keeping lanes on highways or making protected left turns at
traffic lights [2]. Moreover, as current data sets provide few examples of driver interaction
behaviors [1], capturing these implicit interactions becomes a major challenge. Connected
driving simulators have proven to be an effective and rapid tool for collecting driving
data, as they offer repeatable conditions and subjective driver information compared to
traditional traffic observation data [3]. However, additional resources, equipment, and
personnel, including multiple experimenters and participants, are required to conduct a
connected driving simulator study, adding complexity to the experimental design. This
research aims to address these challenges by introducing methods that ensure natural
interactions between drivers in simulation environments and by focusing on the following
research questions:

• RQ1: What methods can be applied to achieve synchronous arrival and naturalistic
interaction between both drivers in multi-driver simulations as planned?

• RQ2: What are the advantages and disadvantages of different methods, and how
effective are they in practical applications?

• RQ3: How to determine driver-driver interactions existence in road traffic?
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2 Related Work

2.1 Related Work on Multi-Driver Simulation

Some research has explored how a driver’s behavior influences other road users or traffic
flow by connecting multiple simulators, creating multi-driver simulations. Mühlbacher et
al. [3] offered methodological advice on multi-driver simulations, while Abdelgawad et
al. [4] reviewed the state-of-the-art in networked driving simulations, focusing on design
considerations and platform evaluations. Houtenobos [5] used two simulators to examine
how uncertainty affects driving behavior. Feierle et al. [6] implemented a multi-agent
simulation to analyze interactions between autonomous and human-driven vehicles. While
these studies demonstrate the broad potential of multi-driver systems, most research
focuses on testing new technologies or evaluating conditions’ effects on human behavior.
Few studies use multi-driver simulations to specifically gather data on driver-to-driver
interactions, leaving a gap in literature regarding detailed analysis of such interactions.

2.2 Approaches to determine interaction existence

Determining whether observable interactions truly exist between drivers constitutes a
foundational step before conducting quantitative analysis. Wang et al. [2] systematically
compared three identification approaches in transportation research: 1) Potential Conflict
Detection, 2) Task-based Agent Selection, and 3) Region of Interest (RoI) Setting. While
the first two methods face limitations in capturing continuous multi-agent interactions,
the RoI-based approach is discussed in detail below.

Defining a specific Region of Interest (RoI) in the driving environment has been shown
to be an effective method for detecting interactions between an ego agent and surrounding
agents [7]. An interaction is considered to occur when two or more agents simultaneously
occupy the RoI, while no interaction is recorded once any agent exits the region. This
method has two variations: Scenario-centric and Agent-centric. In the Scenario-centric
approach, the RoI is fixed at a specific location on the map, treating all vehicles within
this area as interactive agents. In contrast, the Agent-centric approach assigns the RoI
to a particular agent of interest, commonly referred to as the ego agent [2]. The RoI-
based method relies on predefined rules, making the evaluation sensitive to how the RoI
is configured [7]. In general, a larger RoI may include more agents, potentially leading to
an overestimation of interaction occurrences, whereas a smaller RoI could exclude relevant
agents, possibly underestimating the frequency of interactions [2].

3 Methodology

The methodology begins with selecting driving situations where interactions occur fre-
quently. Through thoughtful experimental and map design, all potential interactive driv-
ing situations are connected. This method enables efficient collection of interactive be-
haviors while heightening participant immersion through naturalistic scenario integration.
In each specific scenario where an interaction is needed, the physical elements of the en-
vironment are used to guide and control the drivers’ behavior. This ensures that the
interactions happen as intended.



3.1 Selected Scenarios

The first key criterion for selecting the scenarios was to identify situations where driver
interactions are essential and occur frequently. We refer to these as highly interactive
driving scenarios [1]. The second criterion was based on the overall goal of studying
social interactions between drivers, which is to help autonomous vehicles smoothly being
integrated into future mixed traffic without causing accidents or congestion. Therefore,
we focused on scenarios that are currently complex and challenging for human drivers,
where mistakes or accidents are more likely to occur [8]. The third criterion was to identify
situations where autonomous vehicles are prone to difficulties due to current technological
limitations.

Figure 1: Selected Scenarios Figure 2: Experimental Set-up

To select scenarios that meet these criteria, we organized an expert workshop with
ten participants. To focus on driver-to-driver social interactions and exclude interactions
with vulnerable road users, the workshop only considered scenarios on highways and
rural roads. Through brainstorming sessions and voting, the experts prioritized the most
relevant scenarios. As shown in the Figure1, the selected scenarios include (1) lane changes
on a three-lane highway when the leftmost lane is closed due to construction and (2) lane
changes when both the left and right lanes are closed simultaneously. For rural roads,
the selected scenarios involved an unprotected left turn at a T-junction and overtaking a
broken-down vehicle by borrowing the opposite lane.

3.2 Map design

Designing a route that ensures all scenarios are connected without interruption is a sig-
nificant challenge. Our solution was to decouple the entire driving journey by dividing it
into repeatable modules, such as relevant modules and free driving modules. Each rele-
vant module consists of an entry, exit, and interaction zone (i.e., the scenario), ensuring
consistency across modules. In this work, the implementation is illustrated in the figure
3, where symmetric driving routes were strategically applied in scenarios like left turns



and overtakes. Since the two interactive agents follow the same driving direction, imple-
menting scenarios on highways was relatively straightforward. This approach maintains
continuity between scenarios while also allowing for controlled interactions. This modular
design allows us to randomize the sequence of the scenarios to prevent learning effects
while also minimizing the time and effort required to create entirely new routes. Instead
of designing multiple distinct routes, we can simply rearrange the order of the modules to
present participants with a new and complete driving path. We used the characteristics
of different road types to design how participants would be guided into and out of each
module. This ensured that the transitions between modules were smooth and that the
interaction zones within each module remained the focus of the experiment.

Figure 3: Technical implementation of each scenario module: Illustration of entry, exit,
and interaction zones with blue line representing the blue car’s route and red line repre-
senting the red car’s route

3.3 Synchronization of Participants

The next challenge was to synchronize the participants’ arrival at the entry, exit, and
interaction zones. After thoroughly reviewing related experimental designs and assess-
ing their feasibility, we categorized the synchronization methods into two types: fuzzy
synchronization and precise synchronization.

Fuzzy synchronization included:

• Speed signs, which provided a designated speed for participants. The advantage was
that they could limit speed, but the drawback was that they couldn’t accurately
control speed. If participants drove too fast or too slow, it was impossible to restrict
their maneuvers.

• Symmetrical road geometries, which ensured equal driving distances for both partic-
ipants from a road environment perspective. However, it shared the same drawback
as speed signs.

• Traffic regulations, such as solid and dashed lines indicating when lane changes were
allowed or not.



Precise synchronization included:

• Traffic signals, which accurately controlled vehicle stopping and waiting times.

• Manipulation of surrounding vehicles, such as placing slower vehicles to slow down
participants.

• Message instructions, which provided participants with prompts to adjust their
speed if they were driving too slowly.

Table 1 shows the specific measures used for each scenario in this work. We combined
various approaches. For instance, in the overtaking scenario, we used traffic signals to en-
sure that both participants entered the module simultaneously. The module was designed
with a triangular shape to maintain symmetry. This design required both drivers to travel
the same distance to reach the interaction zone. To prevent either driver from arriving
too early or too late, participants were instructed to maintain the speed indicated by the
traffic signs, set at 80 km/h. The traffic signals also ensured that both participants exited
the module at the same time. The bolded measures represent adjustments made based
on the pilot study results and participant feedback.

Left Turn Overtake Single & Double Lane change

Measures in the pilot study
- Traffic light

- Speed limit

- Traffic light

- Speed limit

- Symmetric road geometries

- Speed limit

- Overhead highway signs indicating lane destinations

- Manipulated slow vehicles

Measures in the main study

- Traffic light

- Speed limit

- Symmetric road geometries

- Traffic light

- Speed limit

- Symmetric road geometries

- Speed limit

- Overhead highway signs indicating lane destinations

- Manipulated slow vehicles

- Solid lines meaning lane changing not allowed

Table 1: Implemented measures in the experiments of this work

4 Experimental Verification and Results

4.1 Experimental Verification

To verify how effective the proposed methods are, we conducted studies connecting two
driving simulators provided by the chair of ergonomics at the Technical University of
Munich. The simulators were placed in separate rooms and linked via LAN to ensure
the lowest possible network latency. The verification process involved two studies: a pilot
study and a main study. Both studies used the same hardware setup, as illustrated in
Figure 2.

4.1.1 Experimental Design

The goal of both studies was to collect as much interaction-driving behavior data as
possible in an experiment while also testing whether our method could ensure natural
driver encounters and interactions in a simulated environment.



Each multi-driver study followed a 3 (scenario type) × 2 (perspective) repeated-
measures design. The first factor, scenario type (within-subject), represented different
types of road interactions and included three levels: left turn, overtaking, and lane change.
The second factor, perspective (within-subject), referred to the role of the participant in
each scenario. When a participant actively initiated a scenario (e.g., making a left turn in
Scenario 1), they were in the active perspective. In contrast, when they simply responded
to the situation (e.g., going straight in Scenario 1), they were in the passive perspective.
Additionally, in Scenario 4, the interaction structure required both participants to take
an active role. Each participant experienced Use Cases 1–7 once in a permuted order
within a simulated drive and completed two full driving sessions in the experiment (see
Table 2). To ensure that participants did not make a trip in vain, an experimenter acted
as a confederate and took the missing participant’s place when necessary.

Left Turn Overtake Single Lane Change Double Lane Change

Active Perspective
Use Case 1

(Turning Left)
Use Case 3
(Overtaking)

Use Case 5
(Changing Lane Mandatorily)

Use Case 7
(Changing Lane Mandatorily)

Passive Perspective
Use Case 2

(Going Straight)
Use Case 4

(Going Straight)
Use Case 6

(Going Straight, Changing Lane If Necessary)
-

Table 2: Seven different use cases each participant experienced

4.1.2 Procedure

Both studies followed the same procedure. Two experimenters conducted the experiments,
each responsible for one participant. The welcoming and introduction were carried out
together to ensure that both participants knew another person was present in the simula-
tion. However, they were not informed which vehicles were controlled by a computer and
which by the other participant. After the introduction, the experimenters guided them
to separate laboratories to begin the experiments. After reading the safety instructions
and participant information, both participants provided their consent to take part in the
experiment. The experiment consisted of three parts: a demographic questionnaire, two
simulated drives, and a post-experiment interview.

Once the questionnaire was completed, participants received their driving task. They
were instructed to navigate to a specific destination while following their usual driving
habits and obeying traffic rules, relying only on road signs and traffic indicators. Next,
both participants underwent validation for the eye-tracking glasses and completed an
introductory drive lasting about 10 minutes. It allowed them to get used to the simulator’s
driving behavior and the road’s navigation signs.

The main experiment involved two driving sessions. Participants completed Use Cases
1-7, arranged in a permuted order to minimize learning effects. To prevent fatigue, each
driving session was kept under 20 minutes. Finally, participants took part in a post-
experiment interview by experimenters. The main study took place one week later after
we refined the scenario implementation based on feedback from the pilot study.

4.1.3 Sample Characteristics

Eight participants took part in the pilot study resulting in four pairs, including one female
and seven males. The average age of the participants was M = 23.88 years, with a standard



deviation of SD = 4.40 years. For the main study, 23 participant pairs were recruited,
resulting in a total of 46 participants. Among them, 39% were women and 61% were men,
with an average age of M = 26.8 years (SD = 10.0 years). The pairing distribution was as
follows: 22% female-female, 43% male-male, and 35% female-male. All participants were
required to hold a valid driver’s license in Europe.

4.1.4 Measures and Analysis

We adopted the agent-centric setting ROI method described in Section 2.2 to assess the
synchronicity and interaction events. The definition of ROI varies across different scenar-
ios due to road geometries and traffic regulations. We assume that the two participant
vehicles are considered as our interactive agents, and only encounters between these two
vehicles are regarded as interactions. Interactions between the participant vehicles and
other programmed surrounding vehicles are not considered for the purpose of this study.

Figure 4: Definition of ROIs in scenarios showed in (a)-(d) and an example of explanation
of start time of interaction in Scenario 1

In the Left Turn and Overtake scenarios, the visibility range of the driving simulator
is 300 m and also verified by eye-tracking data, so the total length of the ROI is 300
m. As shown in the figure, the ROI in these two scenarios is divided into two regions:
ROI A and ROI B. Interaction is considered to occur when the blue car appears in
the ROI A and the red car appears in the ROI B area simultaneously (as defined by
Positionblue car ∈ AreaROI A & Positionred car ∈ AreaROI B). For example, in the Left
Turn scenario, at time t1, the blue car is in the ROI A, but the red car is not present, so
no interaction occurs at that time. At time t2, the red car enters the ROI B region, both
cars can see each other, and we assume they have interacted. Time t2 is thus considered
the start of the interaction (Figure 4 (e)).



For the single and double lane change scenarios on the highway, the drivers can only see
each other through mirrors, with a visibility range limited to 40 m verified by eye-tracking
data. As shown in the figure 4, when the white cars (the manipulated slow cars) are still
in front of both vehicles, neither can change lanes, and no interaction occurs. When the
white cars accelerate and increase the distance from the following vehicle, it indicates
that lane change is possible. Therefore, the time when the white cars start to accelerate
is considered the start time for a potential interaction. To determine if an interaction
has occurred, the distance between the two cars must be less than 40 m, meaning they
are within each other’s visibility range, which is when we consider the interaction to have
taken place.

4.2 Results

Study Scenarios Planed
Attempts

Disrupted
Attempts

Occurred
Attempts

No Inter-
action

Successful
Attempts

Successful
Rate

Pilot Stuy

Left Turn 16 1 15 7 8 53.33%
Overtake 16 2 14 1 13 92.86%

Single Lane Change 16 0 16 4 12 75.00%
Double Lane Change 8 0 8 5 3 37.50%

Sum 56 3 53 17 36 67.92%

Main Study

Left Turn 92 7 85 14 71 83.53%
Overtake 92 10 82 2 80 97.56%

Single Lane Change 92 5 87 14 73 83.91%
Double Lane Change 46 7 39 5 34 87.18%

Sum 322 29 293 35 258 88.04%

Table 3: Overview of interaction attempts and successful rate of each scenario

Table 3 presents the results of the Interaction Event Existence Analysis. Disrupted
attempts, caused by technical failures or participants terminating the experiment due to
motion sickness, were excluded from the calculation of the success rate.

In both studies, the overtake scenario had the highest success rate, reaching 92.86%
in the pilot study and 97.56% in the main study. However, in the pilot study, the dou-
ble lane change scenario had a success rate of less than 50%, falling significantly below
expectations. In contrast, the main study showed a notable improvement, with an over-
all success rate of 88% and each scenario achieving over 80%. Notably, the double lane
change scenario increased by nearly 50%.

The relative distance (∆d) between both vehicles at the start of interaction is shown
in Figure 5. In the Left Turn scenario, the mean distance was M = 114.09 m (SD =
131.32 m), while in the Overtake scenario, it was M = 101.95 m (SD = 95.20 m). In both
cases, an interaction was considered to have occurred when ∆d ≤ 300 m.

For the two highway scenarios, the mean relative distances and standard deviations
were M = 26.02 m (SD = 27.99 m) and M = 25.38 m (SD = 36.10 m), respectively.
Here, an interaction was defined by ∆d ≤ 40 m. Outlier values indicate cases where no
interaction occurred.



(a) Left turn (b) Overtake

(c) Single lane change (d) Double lane change

Figure 5: Relative distance of both vehicles at the interaction start time in the main
study. Outliers indicate that no interaction occurred.

5 Discussion and Conclusion

The results of the pilot study indicated that designing symmetrical routes and assigning
specific speeds were the most effective methods to ensure both vehicles met as intended. In
contrast, simply using speed limit signs was not sufficient to control participants’ driving
behavior. The primary reason for failed interactions was the significant speed differences
caused by variations in participants’ driving styles.

However, implementing traffic lights and surrounding vehicles to slow down partici-
pants proved to be highly effective. Additionally, during the pilot study, we observed that
some participants on the highway overtook the manipulated slow vehicle and continued
driving forward. As a result, they ended up outside the intended lane and moved further
away from the other participant. To prevent this issue, we used solid lane markings, ensur-
ing that lane changes only occurred within the designated area. Findings from the main
study showed that this adjustment significantly improved the success rate of interactions.

To minimize driving behavior differences caused by experimental setup inconsistencies,
each participant experienced Use Cases 1–7, meaning they took on both roles within each
scenario. However, due to equipment limitations, traffic light activation could only be
controlled by one vehicle, increasing the technical complexity of the implementation.
Additionally, inconsistencies between the two simulation labs may have contributed to



variations in participants’ driving behavior. While this work focuses on four specific
interaction scenarios, future research can expand upon these findings by incorporating
additional scenarios, such as urban bottlenecks, intersections, and roundabouts, to further
enhance research on driver social behavior.

This work presents a systematic experimental design to create natural driver interac-
tion scenarios, providing a new way to collect driver-social behavioral data. Two studies
were conducted to evaluate the effectiveness of the proposed measures in the methodol-
ogy. Our experiments confirmed that this approach successfully ensured interactions in
most cases. Additionally, we developed specific metrics to assess whether interactions
occurred in different scenarios and provided several methodological recommendations for
study design.
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[8] N. Grabbe, M. Höcher, A. Thanos, and K. Bengler, “Safety enhancement by auto-
mated driving: What are the relevant scenarios?,” in Proceedings of the 2020 HFES
64th International Annual Meeting, vol. 64, pp. 1686–1690, 2020.


	Introduction
	Related Work
	Related Work on Multi-Driver Simulation
	Approaches to determine interaction existence

	Methodology
	Selected Scenarios
	Map design
	Synchronization of Participants

	Experimental Verification and Results
	Experimental Verification
	Experimental Design
	Procedure
	Sample Characteristics
	Measures and Analysis

	Results

	Discussion and Conclusion

