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Abstract: Modular automated driving systems commonly handle prediction and planning as

sequential, separate tasks, thereby prohibiting cooperative maneuvers. To enable cooperative

planning, this work introduces a prediction model that models the conditional dependencies

between trajectories. For this, predictions are generated by a microscopic traffic simulation,

with the individual traffic participants being controlled by a realistic behavior model trained

via Adversarial Inverse Reinforcement Learning. By assuming various candidate trajectories for

the automated vehicle, we generate predictions conditioned on each of them. Furthermore, our

approach allows the candidate trajectories to adapt dynamically during the prediction rollout.

Several example scenarios are available at https://conditionalpredictionbysimulation.github.io/.
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1 Introduction

Predicting the future trajectories of surrounding traffic participants plays an essential role
in automated driving. By anticipating future movements of nearby agents, such as vehicles
and vulnerable road users, an automated vehicle (AV) can better plan maneuvers, reduce
the risk of collisions, and ensure smoother interactions with other road users.

Although existing approaches, e.g., [1–3], effectively predict the future movements of
individual traffic participants, they limit an AV to a reactive planning strategy, assuming
that the predictions of surrounding vehicles remain unaffected by the AV’s planned actions.
In highly interactive situations, this often leads to the freezing robot problem [4], where the
AV, unable to engage in cooperative planning, simply stops to avoid potential collisions. For
example, when it is unable to merge in dense traffic because the predictions of surrounding
vehicles do not react to the AV’s plan.

One approach to resolving this is to condition the prediction on the AV’s plan, often
referred to as conditional inference [5]. This enables holistic planning: Repeatedly
selecting candidate trajectories and predicting their impact on surrounding vehicles until
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Figure 1: Single simulation step: Each vehicle observes the traffic situation locally, selects
an action based on the observation, and executes it using the kinematics model.

a sufficiently good trajectory is found. A straightforward approach to this involves
extending the prediction model to incorporate the AV’s planned trajectory, improving the
prediction by considering the AV’s influence. However, this requires the AV’s trajectory
to be fixed during prediction, preventing truly interactive planning. We argue that an
effective prediction model should capture the bidirectional interactions by conditioning
the prediction on the plan of the AV while simultaneously allowing the plan to adapt in
response to the evolving predictions, e.g., when planning stepwise in a tree structure [6].

In this work, we realize such a system by learning a reactive behavior policy and
utilizing it for simulating the surrounding vehicles in a closed-loop simulation. As depicted
in Figure 1, our framework predicts the evolution of traffic situations by stepwise simulating
the movements of all surrounding vehicles using the learned behavior policy until the
prediction horizon is reached. At each simulation step, the model processes an observation
describing the traffic situation from each agent’s perspective and executes appropriate
control actions accordingly. This process is conducted stepwise and independently for each
target vehicle, allowing agents to respond to each other’s movements in the subsequent
simulation steps. This approach not only facilitates scene-consistent predictions but also
allows the AV to adapt its planned trajectory dynamically during the prediction rollouts.

Realistically simulating driving behavior requires a behavior model, typically derived
from data-driven methods like Reinforcement Learning (RL) [7] or Imitation Learning
(IL) [8]. While RL enhances robustness, it requires the definition of a reward signal that
describes realistic behavior, which is a complex task. In contrast, Behavior Cloning (BC),
an IL method, learns from expert demonstrations using supervised learning but suffers
from covariate shift [9], where compounding errors during inference lead to situations
differing from the training data, resulting in undefined behavior.

Similar to our previous work [10], we address these limitations by employing Adversarial
Inverse Reinforcement Learning (AIRL) [11] to learn the behavior model. AIRL combines
RL and IL by reconstructing the reward function that best explains the behavior of real-
world drivers, and simultaneously learning a behavior model that maximizes this reward.

Contributions: The core contribution of this work is the integration of flexible
behavior models, learned via AIRL, into a simulation framework to enable conditional
motion prediction. Specifically, this study emphasizes the prediction of surrounding
vehicles conditioned on a predefined plan for the AV, thereby capturing the bidirectional
interactions between the AV and its surrounding agents. As we focus on prediction,
we maintain fixed paths for the AV during prediction; however, the proposed stepwise
approach enables the planning algorithm to adapt its strategy during the prediction rollout.
In addition, we apply the model to various traffic situations with distinct road layouts.



2 Method

Traffic situations are simulated by executing a learned behavior model for every agent
in the scene simultaneously. From the perspective of an individual agent, surrounding
drivers are treated as part of the environment. When driving, the uncertainty arising
from their unknown driving characteristics (e.g., individual driving styles or intentions)
adds complexity to the sequential decision-making process, often formulated as a Partially-
Observable Markov Decision Process (POMDP). Formally, a POMDP is characterized by
the tuple (S,O,A, T,R,Ω, γ). In this framework, the agent cannot directly observe the
true state s ∈ S but instead is limited to a (noisy) observation o ∈ O of the environment,
determined by the observation model Ω : S → O mapping from states to observations.
Upon executing an action a ∈ A, the state of the environment is updated stochastically
according to the transition probability density T : S × A× S → [0,∞[. Additionally, the
agent receives a numerical reward defined by the reward function R : S × A→ R as well
as an observation of the new state of the environment. The discount factor γ ∈ [0, 1[
balances the trade-off between immediate and future rewards. The solution of a POMDP
is the optimal policy π∗ : O×A→ [0,∞[ mapping from observations to distributions over
actions that maximize the expected cumulative reward over time J(π) = Eπ

[∑∞
k=0 γ

krk
]
,

where rk = R(sk, ak).

2.1 Reinforcement Learning

A common approach to maximizing J(π) is through RL, where the agent interacts with
a (simulated) environment via trial and error to discover effective actions. This involves
two alternating steps: 1) The agent collects a new set of experiences E = {e1, . . . , eM},
where ek = (ok, ak, rk) represents one experience obtained by executing a single step in
the environment. 2) The experiences gathered are used to adjust the policy, promoting
actions that lead to higher rewards and vice versa for actions that lead to lower rewards.
These steps are repeated until a sufficiently good policy is found.

Commonly, a parameterized policy πθ is used, where θ denotes the trainable parameters
of the policy. During the policy update, these parameters are updated according to

θ ← θ + α
1

M

∑
ek∈E

A(ok, ak)▽θ log πθ(ak | ok), (1)

where α is the learning rate. Here, the gradients of the policy ▽θ log πθ(ak | ok) are weighted
by the advantage A(ok, ak) denoting how much the action ak is better (A(ok, ak) > 0) or
worse (A(ok, ak) < 0) when making an observation ok compared to acting according to πθ.

The difficulty in our setting is that we are learning a policy for every vehicle in the
scene simultaneously, making the environment non-stationary from an agent’s point of
view. To mitigate this issue, similar to our previous work [7], every agent uses a copy of
the same shared policy, allowing the use of single-agent methods to solve this multi-agent
task. For our experiments, we use Generalized Advantage Estimation (GAE) [12] for
obtaining an estimate of the advantage Â(ok, ak) and the Proximal Policy Optimization
(PPO) [13] algorithm for learning the driver model.



2.2 Adversarial Inverse Reinforcement Learning

Our goal is to predict human driving behavior by learning and executing a policy that
accurately models human driving behavior. Utilizing RL for learning the policy requires
the definition of a reward function that accurately captures the incentive structure of
real-world drivers. For human driving, finding such a reward function is a time-consuming
and tedious task. However, it is easy to demonstrate the desired behavior in the form of a
set of demonstrations recorded in real traffic.

One way to automate the process of defining a reward function is AIRL, where
a surrogate reward signal is reconstructed, which explains the demonstrated behavior.
Utilizing the reconstructed reward for learning the policy model yields policies that mimic
expert demonstrations, given as D = {(o1, a1), (o2, a2), . . . }. Specifically, AIRL combines
RL with the ideas of Generative Adversarial Network (GAN) and applies them to the task
of IL. The policy πθ is still learned via RL maximizing a reward signal, but the reward
signal is now approximated by a discriminator model. The discriminator model Dϕ tries to
distinguish generated samples from demonstrated ones by assigning higher scores to more
realistic samples, whereas the generator model (the trainable policy πθ) tries to fool the
discriminator by generating samples matching the distribution of the demonstrated data.
These adversarial objectives can be modeled with the following two-player minimax game:

min
ϕ

max
θ

[
− E

(o,a)∼D
[log (Dϕ(o, a))]− E

(o,a)∼πθ

[log (1−Dϕ(o, a))]

]
, (2)

where the discriminator assigns the probability Dϕ(o, a) ∈ [0, 1] to the observation-action
pair being real. By imposing a special structure on the discriminator

Dϕ(o, a) =
exp (fϕ(o, a))

exp (fϕ(o, a)) + π (a | o)
, (3)

a surrogate reward signal is reconstructed, where samples with high rewards are exponen-
tially more likely than samples with low rewards. This structure corresponds to the odds
ratio between the policy π (a | o) and the exponentiated reward distribution exp (fϕ(o, a)).
The discriminator is trained by minimizing the binary cross-entropy loss in (2) and the
generator via RL with the surrogate reward function

r̃(o, a) = log (Dϕ(o, a))− log (1−Dϕ(o, a)) + c

= fϕ(o, a)− log π (a | o) + c,
(4)

where c is a constant reward and − log π (a | o) rewards policies for higher entropy, thus
promoting exploration during training and robustness to action noise.

Modifications: In general, AIRL is a domain-agnostic method. However, when
applied to learning a driver model, as proposed in [8, 10], two modifications are required:
1) In the original implementation [11], c = 0 is used in (4), leading to a negative expected
value for the surrogate reward r̃(o, a), as the discriminator is typically able to classify
correctly. In our setting, this resulted in suicidal vehicles leaving the track immediately
to avoid the pain of continuously receiving negative rewards. To alleviate this issue, we
set c = 5, thus promoting survival without changing the optimal behavior with respect
to the discriminator model. 2) While during RL training, a large variance in the actions
drawn from the policy is crucial to gather a diverse set of experiences, it allows the



discriminator to easily detect generated samples. Therefore, to smoothen the decision
boundary, during discriminator training, we add random noise to the actions executed by
the experts matching the standard deviation of the learned policy.

2.3 Model Details

To ensure accurate predictions, the model must understand both its environment and
the interactions between traffic participants. To this end, we employ a flexible graph-
based observation and model architecture, similar to [10], which is particularly effective
for handling complex road topologies. Specifically, we use agent-centric observations
that capture both agents and road elements within a 30m radius. Agents are described
by their size (width and length), position, heading, velocity, and current speed limit:
x = [xsize,xpos,xhead, xvel, xlimit]

⊺. Road elements, such as road markings and boundaries,
are represented as sets of vectors, with each vector being defined by its start and end
points, a one-hot type encoding, and a binary flag indicating whether it is part of the
assigned route: v = [vstart,vend,vtype, vroute]

⊺. Vectors corresponding to the same road
element are grouped into polylines, which are then interconnected with the agent nodes,
forming a higher-level interaction graph.

We use a similar model for both the policy and the discriminator, with the primary
distinction being in the decoder. In our model, polylines of varying length are encoded
through multiple layers of Message Passing (MP), as expressed by:

v← frel
(
genc (v) , fagg

(
{genc (vl)}Ll=1

))
, (5)

with genc(·) being an multi-layer perceptron (MLP), fagg(·) an element-wise max-pooling
operation and frel a simple concatenation. Here, vl ∈ {v1, v2, · · · , vL} denotes one of
the L vectors forming the polyline. Lastly, the polyline embeddings q are obtained by
applying an element-wise max-pooling operation over all polyline vectors. Agent feature
vectors are encoded into the same embedding space using a simple MLP returning the
agent embedding z = MLP(x). To make the target agent aware of its surroundings,
we use a cross-attention operation ztarget ← CA (Q: ztarget, KV: (z,q)) [14] between the
target agent embedding ztarget and the combined embeddings (z,q). Finally, the decoder,
implemented as another MLP, maps the interaction- and map-aware embedding ztarget
to the mean and standard deviation of the next acceleration and steering angle for the
generator, and the expert probability Dϕ(o, a) for the discriminator. As the discriminator
classifies observation-action pairs, the executed action is concatenated to its decoder input.

2.4 Conditional Prediction by Simulation

The primary motivation of this work is not to demonstrate how AIRL can be used to learn
behavior models that imitate human drivers, as this has already been shown in existing
works, e.g., [8, 10]. Instead, we focus on demonstrating how a behavior model learned via
AIRL can be used to predict the future evolution of traffic situations conditioned on the
planned movement of an AV. This is achieved by embedding the behavior model within a
closed-loop simulation framework. In our simulation framework, as illustrated in Figure
1, each vehicle is assigned a predefined route. When predicting trajectories online, this
information must be inferred beforehand by estimating the likelihood of possible route
hypotheses, as done in [15].



Figure 2: Conditional prediction rollout
with past states (blue), AV’s plan (orange),
and predicted states (white).

As illustrated in Figure 2, the predictions
unfold step-wise, with each transition cor-
responding to a single simulation step (see
Figure 1). When conditionally predicting the
evolution of a traffic situation, the AV first
generates a planned trajectory aligned with
its driving objective (represented as the or-
ange sequence of states). At each simulation
step, the AV’s position is updated according
to this plan, while the movements of surround-
ing vehicles are predicted using the learned
behavior model. Note that each predicted state depends on the previous state of all
vehicles, including itself and the AV. This allows the vehicles to react to each other’s
predicted movement in subsequent steps, thereby fostering interaction in the prediction.
Additionally, by mutually conditioning prediction and planning this way, the AV can not
only assess how surrounding vehicles influence its plan but simultaneously how its planned
trajectory affects their predictions.

In general, the planned movement of the AV is not required to be fixed during the
prediction rollout. Instead, it can adapt dynamically in response to the predicted reactions
of surrounding agents. Such a reactive planner could be realized by using a behavior
model similar to the one used for prediction. However, prediction and planning have
distinct requirements. While the prediction model must accurately capture human driving
behaviors (e.g., tailgating or reckless driving), the AV must prioritize safe and conservative
driving. Defining a safe and cooperative behavior planner is beyond the scope of this work.
Therefore, we leave this for future research and use manually defined fixed paths for the
AV during prediction.

3 Experiments

Parameter Value
Agent feature encoder (8, 64, 64)
Number of MP layers 3
MP MLP (layer 1) (11, 64, 32)
MP MLP (layer 2 & 3) (64, 64, 32)
Interaction module cross-attention
Policy decoder (64, 64, 4)
Discriminator decoder (64+2, 64, 1)
Activation function ReLU
Batch Size 1024
Optimizer Adam [16]
Policy learning rate 2 · 10−4

Discriminator learning rate 1 · 10−4

Discount factor γ 0.95
GAE λ [12] 0.95
PPO clip range 0.2

Table 1: Training Parameters

Dataset : For our experiments, we use the
publicly available INTERACTION dataset
[17], which contains recordings from 11 loca-
tions, including roundabouts, unsignalized
intersections, and merging scenarios. The
data consists of 36 279 vehicles, recorded at
a frequency of 10Hz over a total duration
of 931min. The amount of available data
varies significantly across the locations due
to differences in traffic density and record-
ing times. Hence, to address this imbalance,
we downsampled the data to balance sample
sizes across locations during training. For
validation and final testing, we use 20% and
30% of the recordings per location, respec-
tively. The data is divided into 10-second
situations, excluding those where vehicles



could not be assigned a route (e.g., due to illegal turns). Modeling vulnerable road users
is beyond the scope of this work; thus, the corresponding tracks are omitted.

Training : Table 1 outlines the network shapes and training parameters. For the
baseline, a model is trained using BC by minimizing the negative log-likelihood of the
expert actions under the predicted action distribution. The AIRL models are trained
for 10 000 epochs, requiring 43 h on a single RTX8000 48GB GPU. During each epoch,
training situations are randomly initialized, featuring an average of 880 simulated vehicles.
The traffic situations used for validation and final testing include 1019 and 2080 vehicles,
respectively, evenly distributed across the available locations. Each situation is simulated
for 50 timesteps with ∆t = 0.2s between consecutive timesteps. Vehicles that reach the
end of their assigned route, leave the track, or collide are removed from the scene and the
simulation is continued with the remaining vehicles. For final testing, we use the model
with the lowest Root Mean Squared Error (RMSE) after 10 s on the validation data.

3.1 Prediction Performance

Figure 3: Normalized histograms of executed
actions.

For the final evaluation, we simulate each
test situation for a duration of 10 s by em-
ploying the learned behavior policies for all
agents in the scene. The initial situations
are taken from the ground truth test data.
Subsequently, the chosen actions as well
as the generated trajectories are compared
against those of the corresponding ground
truth vehicles.

Model RMSE Collision Off-Track
BC 14.35±0.42m 10.61±1.87% 5.88±0.85%
AIRL 13.63±0.34m 0.65±0.26% 0.23±0.07%

Table 2: Prediction performance after 10 s.

First, we assess the model’s ability to
reliably imitate human driving behavior by
comparing its chosen actions and generated
trajectories with those of the correspond-
ing ground truth vehicles. Figure 3 shows
the chosen actions of the learned behavior
model (blue) and the corresponding ground truth vehicles (orange) in the test situations.
It can be seen that the selected actions largely overlap, indicating that the policy effec-
tively captures the correct distribution of actions. The main discrepancy can be seen
in the accelerations: the predicted vehicles exhibit slightly more negative accelerations,
whereas the ground truth vehicles show a peak at 0m/s2. This can be explained by the
preprocessing of the dataset, where for vehicles at a standstill (e.g., waiting at a yield line)
both their acceleration and steering angle were set to zero.

Table 2 presents the prediction performance of the models trained using BC and AIRL.
Each cell represents the mean and standard deviation of seven models trained with different
random seeds. After predicting for 10 s, both models demonstrate a strong performance
in terms of RMSE, with the AIRL model outperforming the BC model. However, when
looking at the collision and off-track rates, the AIRL models show significantly greater
robustness. This improvement can be attributed to the models being trained in simulation,
where the model can explore and learn from actions that are not present in the dataset.
The result is a realistic behavior model that, when executed in a closed-loop simulation,
generates accurate and scene-consistent predictions.



Conditional Prediction: Furthermore, we want to demonstrate how the learned
behavior model can be used for making conditional predictions. As outlined in Section 2.4,
we modify the planned trajectories for individual vehicles and predict the remaining vehicles.
Similarly, an AV could query the prediction model with different planned trajectories for
itself and select a plan based on the corresponding predictions. Multiple example scenarios
are available at https://conditionalpredictionbysimulation.github.io/.

An example situation is shown in Figure 4. The intersection shown is an all-way
stop intersection, where each vehicle is required to stop before entering the intersection.
Priority is determined by the order of arrival, resulting in significant interactions between
traffic participants. In this scenario, the pink vehicle (ID 6) intends to turn right, while
the oncoming red vehicle (ID 3) intends to turn left towards the same exit. Assuming

Figure 4: Demonstration of a conditional prediction.

https://conditionalpredictionbysimulation.github.io/


that ID 6 is an AV, it must decide whether to proceed before ID 3 or to yield to it. To
evaluate the consequences of both choices, we predict the traffic situation for each of them
separately. The original prediction of the model is shown in Figure 4(a). This prediction
is derived by applying the learned behavior model to all vehicles in the scene. To simulate
the conditioning on the alternative future trajectory of ID 6, its executed accelerations are
simply replaced by constant breaking for the first 5 s. The resulting conditional prediction
is shown in Figure 4(b). For the first 2 s, both predictions evolve similarly. However, then
the predictions start to diverge: Due to ID 6 entering the intersection in 4(a), ID 3 must
decelerate and give way to ID 6. Conversely, in 4(b), ID 6 stops, allowing ID 3 to cross the
intersection unhindered. As a result, ID 3 advances farther during the prediction, allowing
ID 8 to continue driving earlier. The other vehicles’ predictions remain largely unaffected,
as the model has learned that they are not influenced by the changed trajectory of ID 6.

The corresponding ground truth evolution of the situation is shown in Figure 4(c).
There, the vehicle with ID 6 indeed turns first, and the situation unfolds similarly to
prediction 4(a). Notably, the policy exhibits driving dynamics closely resembling real-world
drivers, including comparable velocities, accelerations, and also nuanced driving behavior
like cutting corners. The main difference in the prediction lies in the duration vehicles
stop at a stop line (depicted in red). For instance, the brown vehicle (ID 5) stops for a
shorter time in the prediction than its ground truth counterpart. This can be explained by
the latency between deciding and continuing to drive, as well as the subjective nature of
stopping behavior: some drivers stop for several seconds, while others pause only briefly.

4 Conclusion

This work presents an autoregressive prediction model realized as a simulation framework
that executes learned behavior models for all predicted vehicles. The proposed behavior
model uses a flexible graph representation as input and is trained using the AIRL method.
We evaluated our approach on the INTERACTION dataset, which comprises a variety
of traffic scenarios with diverse traffic densities and road layouts. The results show that
the model generates realistic driving behaviors, resulting in robust and scene-consistent
predictions. Furthermore, we assumed individual vehicles to be AVs and explored the
impact of different candidate trajectories for them on the prediction outcome, highlighting
the model’s ability to evaluate different planning strategies.

While this study focused on prediction, with manually generated plans for the AV,
future work could integrate a more advanced planning algorithm to fully leverage the
proposed prediction framework.
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